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Introduction
Most organizations do not consider production test a top priority, but it is a necessity to prevent 
major quality issues in the products that represent the company brand in the hands of customers. 
The costs, however, can be significant and are often greatly misunderstood, especially when 
there’s no easy way to quantify the positive business impact of high-quality products or shortened 
time to market. But best-in-class organizations are unfazed by this “necessary evil” viewpoint, 
because they seek to understand the total cost of developing, deploying, and maintaining test 
systems to get ahead of this perception. And the cost of automated test, in reality, is far more 
complex than the capital cost of a test rack or even the operator’s hourly rate. 

In this guide, learn about the tools and insight you need to evaluate your test organization, 
propose changes where significant cost savings are available, and improve the profitability of 
your company year over year with smarter investment decisions.

Figure 1. Proper modeling of total cost of ownership uncovers all the lifetime costs of certain test assets and provides a financial 
framework for justifying future strategic investments.
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Development Costs
For most applications, the development costs associated with building a customized automated 
test system are the smallest in relation to the deployment and operation and maintenance costs. 
This is typically because only one system is built to serve as a proof of concept for performance 
benchmarking and test coverage assessment. however, the total cost for developing a test 
system can vary significantly, depending on the end goal. An organization that is creating a 
new product often develops and compares multiple test systems with different architectures 
and instrumentation to identify the optimal approach. 

The R&D (engineering) team responsible for a product designs and builds the majority of 
development systems, and the costs, therefore, are rolled into this budget or cost center. 
More mature test departments work with their R&D teams to influence the design of products, 
often referred to as design for test, or DFT, and also work to develop the test systems. This is 
a best practice but not always possible for test organizations.

For test systems built to test the functionality of a single device or component, the level of 
effort involved with requirements gathering, instrumentation selection, fixturing, and software 
development are relatively finite. If, however, a test department is designing a multipurpose, 
standardized test system to verify the functionality of multiple devices or components, 
development costs can be greater. you must spend more time identifying all permutations of 
functionality that the system must accomplish, device under test (DuT) fixturing must be 
flexible, and the software must be more scalable to make it easy to implement changes when 
adding new devices to the product portfolio.

Other efforts, such as writing a hardware or measurement abstraction layer or mass interconnect 
system, require significantly more upfront development cost, but should pay a return on 
investment for test organizations that either deal with rapid technology change or face 
instrumentation end-of-life (EOl) issues for long life-cycle systems.

The main costs associated with developing an automated test system are:

■■ Planning Effort—Entails the time and expenses required to properly identify all viable 
options for the test system. It includes time spent at vendor websites, product 
demonstration sessions, evaluations, trade shows, and discussion forums.

■■ Developer Training—Includes the time and training course fees associated with learning a 
new set of software development tools (integrated development environment [IDE] or test 
executive) and hardware platforms (for example, rack and stack with SCSI or PXI).

■■ Development Tools—The cost associated with purchasing development licenses for the 
test software (IDE or test executive).

■■ Development Effort—The time associated with the hardware and software development 
of a proof-of-concept test system.

■■ Development System—The capital cost associated with purchasing the initial proof-of-concept 
or demonstrator test system for benchmarking against current or other new systems.

http://ni.com/automatedtest


ni.com/automatedtest

Modeling the Total Cost of Ownership of an Automated Test System4

Deployment Costs
when you put a product into production, you must scale up the proof-of-concept or demonstrator 
test system to meet the volume demands of the product. The throughput (units tested per 
amount of time) of the test system directly impacts the number of systems required to meet 
demand, and product management and the sales channel determine the forecasted volume. 
Alongside coverage of test functionality, the required number of test systems is the factor that 
you should consider most during the development phase because this directly impacts the total 
deployment cost.

Another factor that increases a test system’s deployment cost is shipping. Smaller organizations 
find this less challenging because the manufacturing test and R&D departments can be collocated 
in the same building or at least in close geographic proximity. however, even some smaller 
companies opt to contract the manufacturing and test of their products if they lack the ability 
or expertize to manufacture and test their devices or components. larger companies, however, 
can have manufacturing test and R&D departments located in separate regions within the 
same country, and even in a completely different country. This can increase deployment costs 
dramatically, especially if the manufacturing test system is large and/or heavy. Slower freight 
shipping methods can help to reduce this cost, but only in circumstances where time is not a 
factor. A best practice is to consider the physical size and weight of any test system during the 
development phase, especially when comparing two options, as this can bear a significant 
downstream cost.

The main costs associated with deploying an automated test system are:

■■ Capital Equipment—The number of test systems required, which is determined by the 
product demand and test system throughput, directly impacts this cost. 

■■ System Assembly—The time required to assemble the individual components into a test 
system, which includes building a 19 in. or 21 in. instrumentation rack or other mechanical 
enclosure, installing all test instrumentation, connecting cabling and wiring, installing switching 
and mass interconnect, and fixturing. 

■■ Software Deployment—These costs are associated with compiling or building a collection of 
software components and then exporting these components from a development computer 
to target machines for execution.

■■ Shipping and Logistics—The size and weight of the test system as well as the quantity of 
test systems required for the production or manufacturing facility directly impact this cost. 
The distance travelled and the time window required to receive the shipment also impacts 
the cost. Depending on the ruggedness of the system, special packaging may be necessary.

Figure 2. when selecting between two test systems with similar performance, select the smaller, lighter test system to reduce 
deployment costs.

PXI Test SystemTraditional, Box-Instrument Test System
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Operation and Maintenance Costs
The final and often overlooked or underappreciated costs associated with a test system are 
the operation and maintenance costs. These are typically not attributed to the R&D team that 
originally designed the product or device but almost always roll up to the manufacturing or 
production team; this separation of cost centers makes cross-department collaboration a common 
pain-point. In situations where a company chooses to contract out the manufacturing and test 
of its products, the contract manufacturer incurs the individual costs and negotiates a flat or 
hourly rate for the service.

The costs associated with operating and maintaining an automated test system are:

■■ Hourly Operation—The labor costs for test system operators and support technicians to 
ensure the systems are up and running during manufacturing. The number of test systems 
and the skill level required to operate the system directly impact this amount. 

■■ Operator Training—The time required for each operator to learn how to use a test system. 
Costs typically are limited to the amount of time that each operator must attend training, 
regardless of format (manual, online, or in-person). Companies with a variety of test systems 
must decide on their staffing strategy between a model of every operator can operate every 
test system and each operator specializes on a single test system.

■■ Maintenance—The cost associated with keeping the test system and instrumentation in 
working order. It often includes the cost for annually calibrating equipment, as well as a 
forecasted cost for replacing instrumentation upon failure. how easy the system is to service 
can also impact this.

■■ Spare Inventory—The cost required to keep spare instrumentation in the event of unplanned 
downtime (for example, instrument failure) or planned downtime (for example, calibration). 
Each test system requires spare instrumentation; companies with multiple unique test 
systems, because of high product mix, require a larger set of spare instrumentation and 
parts for their test fleet to ensure high uptime.

■■ Installation—Test systems that consume a lot of power or produce a lot of heat need special, 
high-power electrical work or cooling towers to be installed to ensure proper performance. 

■■ Utilities—The cost associated with powering, cooling, and housing (floor space) the test 
system. The price per square foot of the manufacturing floor and electricity rate can vary 
significantly based on geographic location.

http://ni.com/automatedtest
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Financial Analysis Approaches
Because development and deployment costs are amortized over multiple years and operation 
and maintenance costs occur in the future, you must use a financial model to determine the 
total cost of ownership for a test system. For traditional investment scenarios, a project will 
generate revenue and profit. In this situation, however, there is no revenue or profit but rather 
a relative savings of one test system in comparison to another. Consider a similar situation that 
involves investing in high-efficiency lighting or building insulation, which costs money upfront 
but money will be made through reduced utility expenses in the long run.

■■ Payback Period (PP)—This is the amount of time it takes to recuperate the money you invest 
in a project. The calculation has two parts. First, you must determine the upfront costs by 
finding the difference in developing and deploying the new test system and deploying more of 
the old system. Because the old system has already been developed, there are no associated 
costs. Second, this difference is divided by the annual savings in operation from the new 
system’s efficiency (throughput).

 

■■ Return on Investment (ROI)—This is the ratio of the money earned to the money invested 
over the life of a project, expressed in a percentage. The calculation is more involved as it 
requires you to calculate the projected total cost of ownership for both the old and new options, 
and then find the difference in the two. you then divide this result by the total cost of the more 
cost-effective option, and subtract 1 (100%) from the quotient to find the resulting percentage.

 

■■ Additional Models—To determine the viability of projects or financial investments, you can 
use many additional financial models such as internal rate of return (IRR), net present value 
(NPv), and modified internal rate of return (MIRR). But most of the advanced modeling that 
comes with these drops out when comparing two options against one another, and you can 
simplify the analysis to PP and ROI.

-1
Total Net Savings [$]

Total Cost [$]
Return on Investment (ROI) [%] =

Upfront Cost [$]

Annual Savings [$/yr.]
Payback Period (PP) [yr.] =
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Practical Scenario
The following practical scenario helps demonstrate how you can use financial analysis of total 
cost of ownership to make an informed decision about purchasing a new test system architecture 
instead of keeping an old approach. 

Overview
Company B is a $200 million manufacturer of IP-based satellite communication systems. Their 
current production test system is architected using traditional rack-and-stack box instruments. 
Company B develops and deploys these test systems to a contract manufacturer who charges 
them a flat rate of $30 per hour to perform product test.

The following best characterizes the current test system:

■■ Fully functional and full test coverage
■■ Moderate capital cost
■■ Organization is fully trained on how to operate
■■ Throughput is less than optimal

Because Company B recently invested in a larger sales channel and was able to enter new 
markets for their radar products, their production capacity must increase from 10,000 units to 
25,000 units per year. 

Their engineering team worked with NI to specify a new PXI-based test system that should 
result in a 3X improvement in test time per DuT. however, a new solution would require upfront 
development and deployment costs, so the business impact of the migration must be modeled 
relative to purchasing additional testers based on the previous architecture before a decision 
can be made.  

Figure 3. Increase in demand of 15,000 products, year-over-year.
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Existing Rack-and-Stack System
NRE Capital Investment:  N/A

NRE Development Time:  N/A

Capital Expense:   $100,000 per system

# Existing Test Systems:  10 

Test Time:    40 minutes per device

volume/Throughput:   1,000 devices per year 

New PXI-Based System
NRE Capital Investment:  $90,000

NRE Development Time:  $150,000

Capital Expense:   $120,000 per system

# Existing Test Systems:  N/A

Test Time:    13 minutes per device

volume/Throughput:   3,000 devices per year

Other Financial Variables
Amortization Schedule:  5 years

Replace Existing Systems:  No, keep in operation

Operation Cost per hour:  $30 (contract manufacturer)

Required Throughput:  25,000 units per year

Development and Deployment Costs
The most common assumption during this evaluation process is that it is more economical to buy 
additional test systems based on the existing architecture, because the organization is already 
fully trained and there are no incurred development costs. The system is already architected, 
and it just needs to be replicated. The new system, however, requires planning, architecting, 
training, and other nonrecurring engineering (NRE) costs during the development period. 

The throughput advantage of the new system, however, cannot be ignored; throughput directly 
determines the number of additional or new test systems that must be purchased to reach the 
forecasted increase in volume. In this scenario, scaling up the number of existing test systems 
requires 15 additional systems whereas buying new PXI-based systems requires only five to 
meet the production volume.

http://ni.com/automatedtest
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After determining the number of test systems required for each approach, you can compare 
the total cost associated with the development and deployment and directly understand the 
impact of throughput, capital expense, and NRE.

Figure 4. The 3X throughput improvement of the new PXI test system greatly reduces the number of systems required to meet 
additional product demand.
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Figure 5. Even though the new PXI-based test system incurs NRE development costs, the total cost of development and deployment 
for the new system is $600,000 less expensive.

$1.6M 

$1.4M

$1.2MK 

$1M

$800K 

$600K 

$400K

$200K

0

Deployment
Costs

Total: $1.5M uSD

Additional System 1 Development Time
+2
+3

+4

+5

+6

+7

+8

+9

+10

+11

+12

+13

+14

+15

Development and 
Deployment Costs

Total: $0.9M uSD

Non-Recurring Engineering 
(NRE) Costs

System 1

System 2

System 4

System 5

Capital Investment

System 3

Buy New PXI System

Scale Existing System

12 13 14

http://ni.com/automatedtest


ni.com/automatedtest

Modeling the Total Cost of Ownership of an Automated Test System10

For this given scenario, when comparing the development and deployment costs, buying a new 
solution is more cost-effective than scaling up the existing test system. The biggest driver of the 
inflated costs for scaling up the existing system is the low throughput of the system. Throughput 
alone increases the deployment costs by requiring three times as many test systems to meet 
the required volume. 

But what happens if the variables change? Model different what-if scenarios to ensure that it is a 
profitable outcome, even in the worst-case scenario. 

Some hypothetical scenarios to model: 

■■ what if development time of the new system takes twice a long, and is therefore twice  
as expensive?

■■ what if the capital expense increases by 10 percent because of currency inflation?
■■ what if the throughput improvement is only 1.5X instead of 3X?
■■ what if the sales volume is revised from 25,000 to only 20,000 units?
■■ what if additional floor space is limited?
■■ what if additional power or cooling must be installed at the test facility?
■■ what if the previous instrumentation is now EOl?

Operation and Maintenance Costs
After you have developed and deployed the required number of test systems, you must operate 
and maintain them over the length of the project or product life cycle. The costs associated with 
operating and maintaining a test system are normally attributed to the company’s manufacturing 
group, whereas the development and deployment of a test system are attributed to the R&D 
(engineering) group. without guidance from leadership, the engineering team will likely default 
to cost optimize around development and deployment without considering the implications for 
the operation and maintenance costs. 

In the example above where only development and deployment costs are considered, the new 
test system is more economical than purchasing additional test systems based on the previous 
architecture. Now analyze the operation and maintenance costs of the two options over the 
first five years of the project to understand the impact on the total cost of test. 

In this situation, Company B has contracted the manufacturing and test of its products. The 
contract manufacturer charges Company B $30 per hour to operate the test system.

http://ni.com/automatedtest
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Total Cost of Ownership
Although in this scenario the PXI option is the best choice, it is still important to determine the 
total cost of ownership to effectively model the financial benefit of the new system. This five-year 
analysis provides insight into variables such as PP, ROI, total savings, and reduction in cost of 
test on a per part basis. For this analysis, the development and deployment costs are amortized 
equally (flat) over a five-year period.

Figure 6. In addition to having much lower development and deployment costs, the operation and maintenance costs of the PXI-
based test system are much lower than the previous system’s.
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Scenario Summary
In the case of deciding between these two options for a test system, there are many factors 
to consider. The common assumption is that scaling up the old solution is easier and cheaper, 
but further analysis reveals that investing in a newer, higher performance system is a superior 
financial decision. The biggest factor in the financial advantage of the PXI system is the 3X 
improvement in throughput—this allowed Company B to purchase one-third as many test systems 
to accomplish the same task, which saves them money on the capital investment. Over the 
five-year period, this also reduces the operation and maintenance costs that they pay to the 
contract manufacturer significantly, resulting in a PP of 11 months and a 124 percent ROI on 
the project. 

Conclusion
As device complexity and time-to-market pressures continue to soar, the total cost of ownership 
for an automated test system will continue to play an important role in a company’s profitability. 
To realize this goal, you must look beyond the initial capital cost of the test system to ensure 
that all relevant costs are factored into your purchasing decisions. This guide focuses on automated 
production test, but you can extrapolate and apply the same concept to other phases of bringing 
a product from initial concept to the end user, including R&D, characterization, verification, 
and validation. 

As the developers of the PXI platform, LabVIEW graphical system design software, and 
TestStand test management software as well as a founding member of the PXI Systems 
Alliance, NI has 40 years of experience helping companies to develop automated test systems 
for industries ranging from semiconductor production to aerospace and defense. Our direct 
field engineer team in more than 50 countries worldwide is committed to helping companies, 
large and small, ensure the highest product quality while reducing the cost of test. To take the 
next step, contact your local NI representative.

2016 National Instruments. All rights reserved. labvIEw, National Instruments, NI, NI TestStand, and ni.com are trademarks of National Instruments. Other product and company names listed are trademarks or 
trade names of their respective companies.
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Introduction
Engineers can generally agree on the high importance of the adage “pick the right tool for the 
job.” using the wrong tool can waste time and compromise quality, whereas the right tool can 
deliver the correct result in a fraction of the time.

When building automated test systems, the primary tools at your disposal come in the form 
of measurement instruments. These instruments include known commodities like digital 
mulitmeters (Dmms), oscilloscopes, and waveform generators as well as a variety of new and 
changing categories of products like vector signal transceivers and all-in-one oscilloscopes. To 
select instrumentation, a skilled test engineer must be knowledgeable and proficient in navigating:

■■ Technical measurement requirements of the device under test (DuT)
■■ Key instrument specifications that will influence an application
■■ Various categories of instrumentation available and the trade-offs in capabilities, size, price, 

and so on
■■ Nuanced differences between product models within a given instrument category  

Picking the right tool for the job is much easier said than done, specifically when it comes to 
navigating and evaluating the many trade-offs at play. In this guide, see the major categories 
of instruments available, and learn about common selection criteria to help you narrow in on 
the best choice for your application.

http://ni.com/automatedtest
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Analog and RF Instrumentation
The landscape of analog and RF test instruments is very broad with thousands of models across 
hundreds of product categories. At the same time, it is also predictably governed by the laws of 
physics—specifically, the fundamentals of noise and bandwidth manifest in the form of amplifier 
technology and analog-to-digital converters (ADCs) that are used to create instruments.  
These fundamental physics limitations create a very discernable trade-off in the precision of a 
measurement compared to the speed at which it can be acquired. Shown below is a view of how 
that speed versus resolution trade-off has evolved over time as technology has progressed in 
both traditional and modular instruments.

Analog and RF Instrument Categories
The curve in Figure 1 represents examples from a variety of different instrument categories. 
Dmms provide high accuracy at low speeds at the top left of the chart, oscilloscopes provide 
high-frequency acquisitions at lower resolutions on the bottom right of the chart, and DAQ 
products offer higher channel densities and lower cost in the bottom left.

To narrow in on which category of instrument to begin looking into, first consider a couple of 
key questions about your measurement task:

■■ What is the direction of the signal? (input, output, or both)
■■ What is the frequency of the signal? (DC, kilohertz, megahertz, or gigahertz)

given the answers to those two key questions on directionality and speed, there’s generally 
a natural starting point for the instrument category you should consider, which Table 1 can 
best describe.

Figure 1. Resolution Versus Sample Rate for Instrumentation
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This chart, although helpful, is far from an exhaustive list of instrument types, especially 
regarding vertical or specific-purpose instruments. Some noteworthy areas that the table 
does not cover include:

■■ Specialty DC instruments such as electrometers, microohmmeters, nanovoltmeters, and so on
■■ Audio band analysis and generation (also known as dynamic signal analyzers) 
■■ Specialty analog products including pulse generators, pulser/receivers, and more

Key Specifications to Consider
After you have narrowed a measurement task to a specific instrument category, the next step is 
to weigh the trade-offs among products within that category regarding requirements including:

■■ Signal ranges, isolation, and impedance—First, make sure an instrument’s input signal 
range is large enough to capture the signals of interest. Additionally, consider an instrument’s 
input impedance, which affects the loading and frequency performance of the measurement 
setup, and an instrument’s isolation from ground, which impacts noise immunity and safety.

■■ Analog bandwidth and sample rate—Next, make sure that the instrument can pass 
through the signals of interest based on their analog bandwidth (represented in kilohertz, 
megahertz, or gigahertz) and that the ADC can sample fast enough to capture the signal of 
interest (represented in samples per second such as kilosamples per second, million samples 
per second, or gigasamples per second).

■■ Measurement resolution and accuracy—Finally, evaluate multiple aspects in an instrument’s 
vertical specifications that influence the quality of the measurement such as ADC resolution 
(digital quantization of analog signals, generally between 8-bit up to 24-bit), measurement 
accuracy (maximum measurement error over time and temperature, generally expressed in 
percent or parts per million), and measurement sensitivity (the smallest detectable change, 
generally expressed in absolute units such as microvolts)

Table 1. Analog Instrumentation Categories

DC AND POWER
lOW-SPEED 

ANAlOg
HIgH-SPEED 

ANAlOg
RF AND WIRElESS

INPuT, mEASuRE Digital multimeter 
Analog Input, Data 
Acquisition (DAQ)

Oscilloscope, 
Frequency Counter

RF Analyzer 
Power meter

(Spectrum Analyzer, 
Vector Signal Analyzer)

OuTPuT, gENERATE
Programmable 
Power Supply

Analog Output
Function/Arbitrary 

Waveform generator 
(FgEN, AWg)

RF Signal generator 
(Vector Signal 

generator, CW Source)

INPuT AND OuTPuT 
ON THE SAmE 

DEVICE
DC Power Analyzer

multifunction Data 
Acquisition 

(multifunction DAQ)

All-in-One 
Oscilloscope

Vector Signal 
Transceiver (VST)

INPuT AND OuTPuT 
ON THE SAmE PIN

Source measure unit 
(Smu)

lCR meter Impedance Analyzer
Vector Network 
Analyzer (VNA)
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Instruments that don’t comprise in these functional dimensions of range, accuracy, and speed 
will likely present other trade-offs in terms of price, size, power consumption, and channel 
density—all of which influence an instrument’s utility.

Figure 2 shows a simplified view of the analog input path of a generic measurement 
instrument with four key input stages, the instrument specs those stages influence, and the 
example instrument specifications of a typical Dmm and a typical oscilloscope as influenced  
by that stage.  

The above simplification can be a helpful construct to sift through instrument specifications, which 
are often presented using a variety of different nomenclatures across instrument categories 
and across instrument vendors. These stages are often interdependent in influencing key 
specifications. For instance, the input amplifier can also influence the input bandwidth and the 
effective resolution of an instrument. Similarly, the input impedance of an instrument can have 
major effects on the bandwidth.

Figure 2. Analog Instrumentation Input Stages
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Example Dmm:
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DC coupled 200 kHz 
bandwidth

up to 300 V input 
down to 10 nV 

sensitivity

10k Hz reading rate 
6.5-digital (24-bit) 

resolution

Example 
Oscilloscope:

ground referenced 50 
Ω or 1 mΩ 

(Selectable)

DC or AC coupled 
(Selectable) 

350 mHz bandwidth

up to 40 Vpp input 
down to 1 mV 

sensitivity

up to 5 gS/s sample 
rate 8-bit resolution

Input
To 
PC
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Analog and RF Instrument Categories
As you compare the measurement requirements of your DuT and the capabilities of the 
instruments you’ll use to test them, keep in mind the following critical ratios.

Test Accuracy Ratio = 4:1
When testing a component, such as a voltage reference, make sure that the accuracy of your 
measurement equipment is substantially larger than the accuracy of the component being 
measured. If this criterion is not satisfied, measurement error can be significantly caused by 
both the DuT and the test equipment, making it impossible to know the true source of error. 
Because of this, the concept of test accuracy ratio (TAR) is employed to illustrate the relative 
accuracy of the measurement equipment and the component under test.

Acceptable values for TAR are four and above, depending on the test being performed and the 
test certainty that is required.

TAR = Wanted Accuracy of the Component Under Test

Bandwidth Ratio = 5:1
Rise time and bandwidth are directly related, and one can be calculated from the other. Rise 
time defines the time a signal takes to go from 10 to 90 percent of its full-scale value. As a 
guideline, use the following equation to figure out the bandwidth of your signal based on its 
rise time:

0.35 

Ideally, you should use a digitizer with three to five times the bandwidth of your signal as 
calculated in the equation above. In other words, your digitizer’s rise time should be 1/5 to 1/3 
of your signal’s rise time to acquire your signal with minimal error. you can always backtrack 
to determine your signal’s real bandwidth based on the following formula: 

Tm =     T5
2 + Td

2

Tm = measured rise time,   T5 = actual signal rise time,   Td = digitizer’s rise time

Figure 3. Analog Signal Rise Time

Rise Time

90%

10%

Accuracy of Measurement Equipment

Rise Time
Bandwidth =
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Time Domain Sampling Ratio = 10:1
Whereas bandwidth describes the highest frequency sine wave that can be digitized with 
minimal attenuation, sample rate is simply the rate at which the ADC in the digitizer or 
oscilloscope is clocked to digitize the incoming signal. Sample rate and bandwidth are not 
directly related; however, there is a general rule for the wanted relationship between these 
two important specifications: 

Digitizer’s real-time sample rate = 10 times input signal bandwidth

 
Nyquist theorem states that to avoid aliasing, the sample rate of a digitizer needs to be at least 
twice as fast as the highest frequency component in the signal being measured. However, 
sampling at just twice the highest frequency component is not enough to accurately reproduce 
time-domain signals. To accurately digitize the incoming signal, the digitizer’s real-time sample 
rate should be at least three to four times the digitizer’s bandwidth. To understand why, look at 
the figure below and think about which digitized signal you would rather see on your oscilloscope.

Although the actual signal passed through the front-end analog circuitry is the same in both 
cases, the image on the left is undersampled, which distorts the digitized signal. On the contrary, 
the image on the right has enough sample points to accurately reconstruct the signal, which 
results in a more accurate measurement. Because a clean representation of the signal is 
important for time domain applications such as rise time, overshoot, or other pulse measurements, 
a digitizer with a higher sample benefits these applications.

Digital Instrumentation
In the context of electronic functional test, digital instrumentation serves the purpose of 
interfacing with digital protocols and testing the electrical characteristics and communication 
link characteristics of those protocols. One of most critical aspects influencing the available 
instrumentation for a given task is parallel versus serial digital communications. 

Figure 4. The image on the right shows a digitizer with a sufficiently high sample rate to accurately reconstruct the signal, which will 
result in more accurate measurements.

Rise Time

90%

10%

Rise Time

90%

10%
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Parallel Versus Serial Standards
Serial standards have been gaining in popularity because of the physical limitation on the clock 
rates of parallel buses at around 1 gHz to 2 gHz. This is because of skew introduced by individual 
clock and data lines that cause bit errors at faster rates. High-speed serial buses send encoded 
data that contains both data and clocking information in a single differential signal, allowing you 
to avoid speed limitations in parallel buses. Serializing the data and sending at faster speeds 
allows pin counts of integrated circuits (ICs) to be reduced, which helps decrease size. 
Furthermore, because the serial lanes can operate at a much faster clock speed, they can also 
achieve better data throughput than what was possible with parallel buses.

1  PCI 64-bit/33 mHz

2  PCI 64-bit/66 mHz

3  PCI 64-bit/100 mHz

4  Front Panel Data Port

5  EISA

6  PCI 32-bit/33 mHz

7  PCI 32-bit/66 mHz

8  IDE (ATA PIO 0)

9  ATA PIO 1

10  ATA PIO 2

11  ATA PIO 3

12  ATA PIO 3
 ISA 16-bit/8.33 mHz

13  ultra-2 wide SCSI

14  RapidIO gen1.1

15  gPIB

16  SCSI
 ISA 8-bit/4.77 mHz

1  PCIe gen1x16

2  PCIe gen2x16

3  Serial RapidIO gen2

4  PCIe gen3x16

5  PCIe gen1x8

6  PCIe gen2x8

7  PCIe gen3x8

8  JESD204B

9  PCIe gen1x4

10  Serial RapidIO gen1.3

11  PCIe gen2x4

12  DisplayPort

13  PCIe gen3x4

14  HDmI 1.0
 DVI

15  HDmI 1.3

16  HDmI 2.0

17  SD-SDI

18  gigabit Ethernet

19  SATA 1.0

20  Serial FPDP
 PCIe gen1x1

21  SATA 2.0
 3g-SDI
 JESD204A
 10 gigabit Ethernet

22  PCIe gen2x1
 uSB 3.0

23  SATA 3.0

24  PCIe gen3x1

25  uSB 3.1

1

4
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Figure 5. This chart shows well-known bus standards and their respective numbers of lanes versus line rates. The serial standards are 
capable of much higher line rates than the parallel standards, leading to higher throughput.
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Digital Instrument Categories
As with analog instrumentation, you can quickly narrow your options for digital instrumentation 
using a couple of key questions:

■■ What task do you need to accomplish? (digital interfacing, custom digital interfacing, or 
electrical and timing test)

■■ How fast is the link? (static and kilobit per second range, megabit per second, or gigabit 
per second)

Hardware Versus Software Timing
you can implement digital communication schemes using two main methods: software timing 
and hardware timing. Software-timed applications do not use any type of clock for input or output. 
The software controls the I/O, and a programming language controls the timing through software. 
This programming language typically runs on an OS, which could take up to milliseconds to 
execute software calls. For software timing, you use the OS timer to determine the rate of 
timed actions. generally, low-speed applications, such as monitoring and controlling alarms, 
motors, and enunciators, use software timing.

you can choose from two types of software-timed communication: deterministic control and 
nondeterministic control. using a real-time OS, you can achieve precision of up to 1 µs; however, 
real-time OSs do not make communications faster, only more deterministic. Non-real-time 
systems, such as microsoft Windows, are nondeterministic. In these systems, the time taken for 
software commands to execute in hardware is inconsistent and could take multiple milliseconds. 
Factors such as computer memory, processor speed, and other applications running on the OS 
could affect the execution time.

Table 2. Digital Instrumentation Categories

STATIC, lOW SPEED
SyNCHRONOuS AND 

HIgH-SPEED PARAllEl 
(100 mBITS/S RANgE)

HIgH-SPEED SERIAl
(10 gBITS/S RANgE)

INTERFACE
(STANDARD)

low-Speed Standard Interface Card (I2C, C) 
Synchronous Protocol Interface 

(ARINC 429, CAN, gPIB, I2C, SPI)

Interface Card 
 (10 gigabit Ethernet, Fibre 
Channel, PCI Express, and 

so on)

INTERFACE (CuSTOm) Digital I/O (gPIO)
Digital Waveform generator/ 
Analyzer, Pattern generator

FPgA-Based High-Speed 
Serial Interface 

Aurora, Serial Rapid I/O, 
JESD204b

ElECTRICAl TEST AND 
TImINg TEST

(BASIC INTERFACE)

Pin Electronics Digital, 
Per-Pin Parametric measurement unit (PPmu)

BERT, Oscilloscope
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Hardware-timed devices, in contrast, use the rising or falling edges of a clock for deterministic 
generation or acquisition. you can use this kind of timing to acquire or generate digital data at 
rates in the gigabit per second range with very high determinism, and you can reliably output 
data at predetermined locations.

Applications that use hardware timing include the following:

■■ Chip testing
■■ Protocol emulation and testing
■■ Digital video and audio testing
■■ Digital electronics testing

Clock Rate
An important consideration for hardware-timed digital applications is clock speed. The maximum 
speed that a device can achieve is difficult to compensate for if it is inadequate. you can achieve 
up to 200 mHz sampling rates for single-ended signals and up to 200 mHz for differential signals 
using NI high-speed digital I/O devices, thus enabling tests including protocol, digital audio and 
video, and digital electronic. For scenarios where a device might not meet the necessary clock 
rate requirements on a serial data stream, you can use serializers/deserializers (SERDES) to 
acquire higher frequency digital signals. However, depending on the type of SERDES you use, 
incorporating a SERDES might reduce the number of available lines.

Figure 6. With hardware-timed operations, you can take advantage of real-time, deterministic digital signal output.

Data

Clock
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Form Factor
In addition to understanding the analog front end required to physically make the correct 
measurement, you need your instruments to be stable, repeatable, fast, and PC-connected—
that’s part of the job. This brings you to a decision regarding the setting/environment:

■■ For the bench and lab—Accuracy, repeatability, low-level control, ease of setup, and  
ability to automate for repetitive tests

■■ For the manufacturing floor—Speed, throughput, accuracy, optimization through 
programming interface, and debugging 

Clearly, there are similarities and differences in how you’d select instrumentation across the 
lab versus the manufacturing floor. you typically evaluate instrument form factors across a set 
of key success criteria for the end deployment. Below is a typical set of evaluation criteria you 
might see for a manufacturing environment.

Selecting Bus Type
Today, uSB, PCI Express, and Ethernet/lAN have gained attention as attractive communication 
options for instrument control. Some test and measurement vendors and industry pundits 
have claimed that one of these buses, by itself, represents a solution for all instrumentation 
needs. In reality, it is most likely that multiple bus technologies will continue to coexist in future 
test and measurement systems because each bus has its own strengths. 

Table 3. Hardware Deployment Checklist

FuNCTIONAl NEEDS TEST ENgINEERINg NOTES

Instrumentation, I/O needed?

Processing, compute needed?

Data throughput, storage?

Synchronization?

Future requirements?

Number of systems deployed over number of years?

years of planned sustainment?

Number of global sites replicating?

Environmental stability of deployment scenarios?

How is the initial setup, configuration, and repair managed?

Rack mounted?

Size, weight, and power?

Fixture and connectivity?
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Bandwidth
When considering the technical merits of alternative buses, bandwidth and latency are two of 
the most important bus characteristics. Bandwidth measures the rate at which data is sent 
across the bus, typically in megabytes per second. A bus with high bandwidth can transmit more 
data in a given period than a bus with low bandwidth. most users recognize the importance 
of bandwidth because it affects whether their data can be sent across the bus to or from a 
shared host processor as fast as it is acquired or generated and how much onboard memory 
their instruments will need. Bandwidth is important in applications such as complex waveform 
generation and acquisition as well as RF and communications applications. High-speed data 
transfer is particularly important for virtual and synthetic instrumentation architectures. The 
functionality and personality of a virtual or synthetic instrument is defined by software; in most 
cases, this means data must be moved to a host PC for processing and analysis. Figure 7 
charts the bandwidth (and latency) of all the instrumentation buses examined in this guide.

Latency
latency measures the delay in data transmission across the bus. By analogy, if you were to 
compare an instrumentation bus to a highway, bandwidth would correspond to the number of 
lanes and the speed of travel, while latency would correspond to the delay introduced at the on 
and off ramps. A bus with low (meaning good) latency would introduce less delay between 
the time data was transmitted on one end and processed on the other. latency, while less 
observable than bandwidth, has a direct impact on applications where a quick succession of 
short, choppy commands is sent across the bus, such as in handshaking between a Dmm and 
switch, and in instrument configuration.

Figure 7. Bandwidth Versus latency for Instrumentation Buses
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GPIB
The IEEE 488 bus—commonly known as gPIB—is a proven bus designed specifically for 
instrument control applications. gPIB has been a robust, reliable communication bus for 30 
years and is still the most popular choice for instrument control because of its low latency and 
acceptable bandwidth. It currently enjoys the widest industry adoption with a base of more 
than 10,000 instrument models with gPIB connectivity.

With a maximum bandwidth of about 1.8 mbytes/s, it is best suited for communicating with and 
controlling stand-alone instruments. The more recent, high-speed revision, HS488, increased 
bandwidth up to 8 mbytes/s. Transfers are message-based, often in the form of ASCII characters. 
multiple gPIB instruments can be cabled together to a total distance of 20 m, and bandwidth 
is shared among all instruments on the bus. Despite relatively lower bandwidth, gPIB latency 
is significantly lower (better) than that of uSB and especially Ethernet. gPIB instruments do not 
autodetect nor autoconfigure when connected to the system; though gPIB software is among 
the best available, and the rugged cable and connector are suitable for the most demanding 
physical environments. gPIB is ideal for automating existing equipment or for systems requiring 
highly specialized instruments.

USB
uSB has become popular in recent years for connecting computer peripherals. That popularity 
has spilled over into test and measurement with an increasing number of instrument vendors 
adding uSB device controller capabilities to their instruments. Though most laptops, desktops, 
and servers may have several uSB ports, those ports usually all connect to the same host 
controller, so the uSB bandwidth is shared among all the ports. 

latency for uSB falls into the better category (between Ethernet at the slow end and PCI and 
PCI Express at the fast end), and cable length is limited to 5 m. uSB devices benefit from 
autodetection, which means that unlike other technologies, such as lAN or gPIB, uSB devices 
are immediately recognized and configured by the PC when a user connects them. uSB 
connectors are the least robust and least secure of the buses examined here. External cable 
ties may be needed to keep them in place.

uSB devices are well suited for applications with portable measurements, laptop or desktop data 
logging, and in-vehicle data acquisition. The bus has become a popular communication choice 
for stand-alone instruments because of its ubiquity on PCs and especially its plug-and-play ease of 
use. The uSB Test and measurement Class (uSBTmC) specification addresses the communication 
requirements of a broad range of test and measurement devices.

http://ni.com/automatedtest


ni.com/automatedtest

Selecting Instrumentation14

PCI
PCI and PCI Express achieve the best bandwidth and latency specifications among all the 
instrumentation buses examined here. PCI bandwidth is 132 mbytes/s, with that bandwidth 
shared across all devices on the bus. PCI latency performance is outstanding—benchmarked 
at 700 ns, compared to 1 ms in Ethernet. PCI uses register-based communication. unlike the 
other buses mentioned here, PCI does not cable to external instruments. Instead, it is an internal 
PC bus used for PC plug-in cards and in modular instrumentation systems, such as PXI, so 
distance measures do not directly apply. Nonetheless, the PCI bus can be extended by up to 
200 m by the use of NI fiber-optic mXI interfaces when connecting to a PXI system. Because 
the PCI connection is internal to the computer, it is probably fair to characterize the connector 
robustness as being constrained by the stability and ruggedness of the PC in which it resides. 

PXI modular instrumentation systems, which are built around PCI signaling, enhance this 
connectivity with a high-performance backplane connector and multiple screw terminals to keep 
connections in place. Once booted with PCI or PXI modules in place, Windows automatically 
detects and installs the drivers for modules. In general, PCI instruments can achieve lower 
costs because they rely on the power source, processor, display, and memory of the PC that 
hosts them rather than incorporating that hardware in the instrument itself.

PCI Express
PCI Express is similar to PCI. It is the latest evolution of the PCI standard. Therefore, much of 
the above evaluation of PCI applies to PCI Express as well.

The main difference between PCI and PCI Express performance is that PCI Express is a higher 
bandwidth bus and gives dedicated bandwidth to each device. Of all the buses covered in this 
guide, only PCI Express offers dedicated bandwidth to each peripheral on the bus. gPIB, uSB, 
and lAN divide bandwidth across the connected peripherals. Data is transmitted across 
point-to-point connections called lanes at 250 mbytes/s per direction for gen 1 link. Each PCI 
Express link can be composed of multiple lanes, so the bandwidth of the PCI Express bus 
depends on how it is implemented in the slot and device. A x1 (by 1) link provides 250 mbytes/s, 
a x4 link provides 1 gbyte/s, and a x16 link provides 4 gbytes/s dedicated bandwidth. PCI 
Express achieves software backward compatibility, meaning that users moving to the PCI 
Express standard can preserve their software investments in PCI. PCI Express is also 
extensible by external cabling.

High-speed, internal PC buses were designed for rapid communication. Consequently, PCI 
Express is an ideal bus choice for high-performance, data-intensive systems where large 
bandwidth is required and for integrating and synchronizing several types of instruments.
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Ethernet/LAN/LXI
Ethernet has long been an instrument control option. It is a mature bus technology and has been 
widely used in many application areas outside test and measurement. 100BASE-T Ethernet 
has a theoretical max bandwidth of 12.5 mbytes/s. gigabit Ethernet, or 1000BASE-T, increases 
the max bandwidth to 125 mbytes/s. In all cases, Ethernet bandwidth is shared across the 
network. At 125 mbytes/s gigabit Ethernet is theoretically faster than Hi-Speed uSB, but this 
performance quickly declines when multiple instruments and other devices are sharing network 
bandwidth. Communication along the bus is message-based with communication packets 
adding significant overhead to data transmission. For this reason, Ethernet has the worst 
latency of the bus technologies featured in this guide.

Nonetheless, Ethernet remains a powerful option for creating a network of distributed systems. 
It can operate at distances up to 85 m to 100 m without repeaters and has no distance limits 
with repeaters. No other bus has this range of separation from the controlling PC or platform. 
As with gPIB, autoconfiguration is unavailable on Ethernet/lAN. you must manually assign an 
IP address and subnet configuration to your instrument. like uSB and PCI, Ethernet/lAN 
connections are ubiquitous in modern PCs. This makes Ethernet ideal for distributed systems 
and remote monitoring. It is often used in conjunction with other bus and platform technologies 
to connect measurement system nodes. These local nodes may themselves be composed of 
measurement systems relying on gPIB, uSB, and PCI. Physical Ethernet connections are more 
robust than uSB connections, but less so than gPIB or PXI.

lAN eXtenstions for Instrumentation (lXI) is an emerging lAN-based standard. The lXI standard 
defines a specification for stand-alone instruments with Ethernet connectivity that adds triggering 
and synchronization features.

Despite the conceptual convenience of designating a single bus or communication standard 
as the ultimate or ideal technology, history shows that several alternative standards are likely 
to continue to coexist, because each bus technology has unique strengths and weaknesses. 
Table 4 compiles the performance criteria from the previous section. It should be clear that 
no single bus is superior across all measures of performance.

BANDWIDTH 
(mByTES/S) lATENCy (µS)

RANgE (m) 
(WITHOuT 

EXTENDERS)

SETuP AND 
INSTAllATION

CONNECTOR 
RuggEDNESS

gPIB
1.8 (488.1) 
8 (HS488)

30 20 good Best

uSB 60 (uSB 2.0) Analog Output 5 Best good

PCI (PXI) 132 0.7 Internal PC Bus Better
Better 

Best (for PXI)

PCI EXPRESS  
(PXI EXPRESS)

250 (x1) 
4,000 (x16)

0.7 (x1) 
0.7 (x4)

Internal PC Bus Better
Better 

Best (for PXI)

ETHERNET/ 
lAN/lXI

12.5 (Fast) 
125 (gigabit)

1,000 (Fast) 
1,000 (gigabit)

100 m good good

Table 4. Bus Performance Comparison
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you can exploit the strengths of several buses and platforms by creating hybrid test and 
measurement systems that combine components from modular instrumentation platforms, 
such as PXI and stand-alone instruments, that connect across gPIB, uSB, and Ethernet/lAN. 
One key to creating and maintaining a hybrid system is implementing a system architecture that 
transparently recognizes multiple bus technologies and takes advantage of an open, multivendor 
computing platform, such as PXI, to achieve I/O connectivity.

The other key to successfully developing a hybrid system is ensuring that the software you 
choose at the driver, application, and test system management levels is modular. Though some 
vendors may offer vertical software solutions for specific instruments, the most useful system 
architecture is one that breaks up the software functions into interchangeable modular layers 
so that your system is neither tied to a particular piece of hardware or to a particular vendor. 
This layered approach provides the best code reuse, modularity, and longevity. For example, 
Virtual Instrument Software Architecture (VISA) is a vendor-neutral software standard for 
configuring, programming, and troubleshooting instrumentation systems comprising gPIB, 
serial (RS232/485), Ethernet, uSB, and/or IEEE 1394 interfaces. It is a useful tool because the 
API for programming VISA functions is similar for a variety of communication interfaces.

With hybrid systems, you can combine the strengths of many types of instruments, including 
legacy equipment and specialized devices. Despite the appeal of finding a one-size-fits-all 
solution for instrumentation, reality requires that you fit the instruments and associated bus 
technologies to your specific application needs.
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Timing and Synchronization
you can find a good example of integrated timing and synchronization between instruments 
in the PXI platform, a modular standard for test and measurement. PXI Express maintains the 
10 mHz backplane clock as well as the single-ended PXI trigger bus and length-matched PXI 
star trigger signal that the original PXI specification provides. PXI Express also adds a 100 mHz 
differential clock and differential star triggers to the backplane to offer increased noise immunity 
and industry-leading synchronization accuracy (250 ps and 500 ps of module-to-module skew, 
respectively). NI timing and synchronization modules are designed to take advantage of the 
advanced timing and triggering technology featured in its PXI and PXI Express chassis.

Next Steps
learn more about the basics of using test and measurement instrumentation by reading the 
white paper series, Instrument Fundamentals. This series covers topics ranging from 
analog sampling theory to grounding considerations for improved measurements. 

2016 National Instruments. All rights reserved. National Instruments, NI, and ni.com are trademarks of National Instruments. Other product and company names listed are trademarks or trade names of their 
respective companies.

Figure 8. Example of PXI Chassis Timing and Synchronization Features
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Introduction
Powering an automated test system, or automated test equipment (aTE), is different from 
powering the PC and lamp on your desk. Test systems are composed of many heterogeneous 
internal components, some of which require large amounts of current and power, and these 
systems are often deployed globally into facilities with differing power sources and quality. 
many test system components are sourced from multiple vendors and must be integrated by 
the test engineers, which complicates matters even more. Choosing the right components and 
making the right design decisions is much simpler when you follow best practices in power 
layout and equipment selection. 

a power layout ensures all components operate properly by avoiding bottlenecks where a 
component may need more power than the power distribution can provide. This is especially 
important for components that could compromise operation of the whole system if starved of 
power. This guide covers test system power planning by listing the steps and considerations 
for creating a power layout.

VirtualBench

Power 
Entry Panel

UPS

Figure 1. a power layout includes all equipment in the test system and maps the flow of power from the source to the test system  
to the end consumer.

750 W Power Supply

DUT Control Equipment

PXI System

Overtemp monitor

Ethernet Switch

HmI

Fans

1 ø PDU

1 ø PDU
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Introducing Power to the System 
a best practice for introducing power to the aTE system is to use a power entry panel, or 
power inlet panel. This allows you to isolate the internal power cabling from the point at which 
the main voltage is applied. With a power entry panel, you can outfit your test system with 
the proper power connector rated for the voltage and current that will be powering the system. 
NI power entry panels use a number of connector types and power ratings for a variety of power 
requirements and geographic coverage. Figure 1 shows examples of power panel connectors. 
a good power panel should also have built-in circuit protection, including a circuit breaker and 
fuses, which protects the system from power surges or incorrect supply power. a great power 
panel has a built-in electromagnetic interference (EmI) filter, surge suppression, and other 
connectivity to pass signals into the system.

Figure 2. a power entry panel provides connectivity for incoming power to the system. Power entry panels can have one of a 
number of standard power connector types and good power panels have additional features like filtering or kill-switch relays.

�� IEC 60320 (C20)

�� 1ø (16 a) 100-240 V

Low-Power Configuration

�� IEC 60309

�� 1ø (32 a) 100-240 V

Medium-Power Configuration

�� IEC 60309

�� 3ø (16 a) 380-480 V (Red:3P+N+E)

High-Power Configuration

Ethernet 
Pass-Thru

(4) USB 
Pass-Thru

Line Filter

Star Grounding 
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External 
Grounding Pin

Power 
Connector
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Geographic Location Considerations
The geographic location of the tester or test facility is a critical detail in choosing the power panel 
for your test system. additionally, when planning a new test system, consider the power standards 
and grid infrastructure, safety requirements, and ease of deployment, which are all factors that 
location can affect.

Power Grid Standards
The line power available from the public grid differs from country to country. Countries around 
the world have standardized on different RmS voltage levels, aC power frequency, connectors, 
and current ranges in their power grids. There are several types of power configurations in 
public grids: 

■■ Single-phase power uses a single active line that conducts an aC power and a neutral line. 
Common voltage levels of these lines vary from 100 V to 240 V. For instance, line power in 
Japan is 100 V, while power is delivered between 220 V and 240 V. The United States and 
Canada transmit power in public grids at 110 V to 120 V.

■■ Dual- or split-phase power is composed of two active lines that supply power at a given 
positive and negative offset voltage and one neutral wire. a common implementation of 
dual-phase power in the United States is 120 V with a 180 degree offset between active 
lines. Having two wires that are transmitting power with voltage levels of 120 V and -120 V 
allows you to have two single-phase sources of power with 120 V of potential by using each 
active line and the neutral line or one single-phase source with 240 V of potential by using 
the two active lines. 

■■ Three-phase power is made up of three active lines that are 120 degrees offset from one 
another and one neutral wire. most US buildings use 208 y/120 V power, which has three 
lines that conduct 120 V power and a constant power circuit output of 208 V. many industrial 
building use 480 y/277 V, which provides 480 V for larger machinery.  

Global Deployment
Test systems are often designed and deployed in separate or multiple locations. Having a 
single system deployed in multiple locations introduces new sets of system requirements. 
Deploying a system to malaysia is different from deploying a system to a factory in the same 
country or even the same building. For example, you may build a test system for automotive 
engine control units at an R&D facility in Detroit but deploy it to factories in mexico. Consider 
the power grid standards and quality when designing the system and confirm that all safety 
and regulatory certifications needed to deploy in mexico are met before you ship the system. 
Here is a checklist of items to think through when designing a test system that will be 
globally deployed:

■■ Power grid voltage standard and configuration
■■ Power grid quality and reliability
■■ materials compliance like RoHS
■■ Energy compliance like CE, PSE, or KC
■■ Trade compliance and import/export regulations

http://www.ni.com/automatedtest


ni.com/automatedtest

Power Infrastructure5

If you plan to deploy the test system to countries or regions outside the test system’s country 
of origin, know the available power in the location(s) that the test system will be deployed and 
if you need to convert that power to operate the equipment in your test system. In the example 
above, the test systems were going to malaysia and mexico. Luckily, the power grids in both 
the United States and mexico provide power at 110 V to 120 V and 60 Hz. This gets a bit more 
complex for a test station designed in Germany and deployed to mexico where mains voltages 
are different.

Power converters and uninterruptable power supplies (UPSs) can help you to condition standard 
power to meet the needs of the system. For example, a test system that includes equipment 
that accepts only 120 V may need to include a power converter to turn 230 V single-phase power 
into a single-phase 120 V supply for the instrumentation. Better yet, evaluate and select equipment 
that has global input voltage to avoid the hassle altogether.  

Certification
many countries have specific required electrical safety standards like CE in Europe, PSE in Japan, 
or KC in Korea. Compliance testing for electrical test equipment usually includes emissions level 
and frequency, touch safety, and surge protection. The most important reason to get these 
markings is to be able to deploy systems to other countries or certify a factory for operation. 
Do the necessary research to know the required certifications in each country in which the 
test system will operate. Ignoring the certifications could make it problematic to service test 
systems in the future. Individual components cannot be imported unless they have these marks, 
so it is difficult to replace or repair parts that lack proper certification.

Figure 3. Designing and deploying test systems in multiple countries requires you to be flexible in designing your system.  
Consider power standards and certifications whenever you are developing a test system that could be used in multiple locations.

Factory Deployment

System Design

Factory Deployment

System Design
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Electromagnetic Interference or Line Filters
Power grids carry high-energy signals that emit electromagnetic noise. most noise from power 
lines is relatively consistent and you can plan for it in advance. No grid is perfect, however, so 
there will most likely be some nonstandard noise in the power signal. Nonstandard noise can 
affect the measurements taken by instrumentation in the system or cause the system to violate 
certification requirements. EmI and line filters are the most common ways to protect the test 
system from unexpected noise sources emanating from power transmission lines. a line filter 
is specified for a given voltage level, a maximum current level that should not be exceeded, and 
an operating range for frequencies it filters from the signal. For example, a line filter may be 
designed for 250 V, 10 a, and operate from 150 kHz to 1 mHz. Be sure to choose the right line 
filter for the power and unwanted noise frequencies in your test system. NI power entry panels 
include EmI/line filters to protect sensitive measurement equipment.

Low-Power Configuration

EPO 
Relay

Line/EmI 
Filter

mid-Power Configuration

Line/EmI 
Filter

High-Power Configuration

Line/EmI 
Filter

20 a 
Breaker

20 a 
Breaker

Figure 4. a circuit breaker and Line/EmI filter are critical to protecting the equipment in your test system and ensuring proper  
and accurate performance of your instrumentation. Example power entry panels are shown for low-power, mid-power, and  
high-power configurations.
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To PDU (1ø)

To PDU 1 (1ø)
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To PDU 2 (1ø)
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To PDU (3ø)

Circuit 
Breaker

EPO 
Relay

Circuit 
Breaker

EPO 
Relay

Circuit 
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Power Budget
a power budget is a critical part of planning resources and components for a test system. a 
given piece of equipment must have access to the proper amount of current at the correct 
voltage level. Budgeting must be performed for the entire system and at each point that 
power is distributed within the system. after determining the amount of power required, you 
can apply a few standard rules to the calculated values to right-size the power allocations in 
the test system.

System Power Budget
a system power budget begins with finding the maximum power requirements of all equipment 
included in the test system. The sum total should contain the expected power draw of all 
components in the test system, including voltage, current, and watts of power. In many cases 
the most important part of power budgeting is the current. Only a certain amount of current 
can flow through a given transmission line in the system, so current often has to be carefully 
distributed throughout the system using a power distribution unit (PDU).

The power draw of a given device is generally published in the user manual and sometimes 
includes a number of power requirements at different conditions. Occasionally, devices have 
specified typical power consumption and a maximum or worst-case power consumption 
specification. as a best practice, use the maximum power requirement as a conservative safety 
measure, and then subtract a given percentage, usually 30 to 40 percent, for a more realistic 
measure. Figure 5 shows the maximum power requirement of a stand-alone instrument that 
would be integrated into a test system.

Figure 5. The VirtualBench all-in-one instrument specifies maximum power required at times of high-energy usage as  
opposed to typical or average power.

Power Requirements

Caution: The protection providd by the VirtualBench hardware can be impaired if it is used in a manner 
not described in the NI VB-8034 Safety, Environmental, and Regulatory Information document.

Voltage input range 100 VAC to 240 VAC, 50/60 Hz

Power consumption 150 W maximum

Power input connector

Power disconnect

IEC C13 power connector

The AC power cable provides main power disconnect. Do not 
position the equipment so that it is difficult to disconnect 
the power cable. Depressing the front panel power button 
does not inhibit the internal power supply.
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as a quick and simple example consider the test system in Table 1. First collect the maximum 
power consumption of each piece of equipment in the test system. make sure to account for 
subsystems and bottlenecks. PDUs have a maximum current limit—in this case 16 a—so plan 
accordingly. The next step is to correct these values for typical power required as opposed to 
maximum. This means taking about 60 to 70 percent of that value. In this case, that gives you 
approximately 1,920 W for this test system using 70 percent as a conservative measure. It may 
also be a good idea to add about 20 percent of this full value as a means of expanding or adding 
new functionality to the system in the future without having to add more power to the system.

 

Three easy best practices can significantly simplify power budgeting:

■■ 1. Base your system power requirements on about 60 to 70 percent of the maximum required 
power of each component.

■■ 2. add about 20 percent to the final power calculation from rule one as a safety buffer to 
account for high-activity periods and any necessary future expansion of the test system.

■■ 3. Remember that some items connect through PDUs and UPSs, so there are power 
subsystems within the larger system.

Table 1. Start calculating a power budget by collecting the maximum power consumption of all system components, applying an 
average power utilization factor, and adding them together. Remember to account for bottlenecks and subsystems.

EqUIPmENT
maXImUm POWER 

CONSUmPTION
aVERaGE POWER 

UTILIzaTION
CURRENT aT 110 V

PDU 1

Fans 50 W 35 W .03 a

HmI 100 W 70 W .06 a

Ehternet Switch 25 W 17.5 W .02 a

Overtemp monitor 10 W 7 W .01 a

PXI System 526.9 W 369 W 3.4 a

DUT Control Pumps 1,000 W 700 W 6.4 a

PDU 1 Total 1,198.5 W 11.0 A

PDU 2

VirtualBench 150 W 105 W 1.0 a

750 W Power Supply 1,100 W 770 W 7.0 a

PDU 2 Total 875 W 8.0 A

System Total 2,073.5 W 19.0 A
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Subsystem Power Budget
a step not included in solving for the power budget above is how to account for subsystems 
within the large test rack. a subsystem can be any subset of the equipment in the larger test 
system that all share a common power source. This may be a number of instruments using a 
single bank of a PDU or a modular instrumentation system like PXI.

a benefit of modular instrumentation is that it can simplify power management. If all the 
instruments included in the PXI chassis were separate in the test system, you would have to 
account for each of them individually. PXI chassis provide high-quality and safe power to all 
instruments in the chassis and come in several power and instrumentation slot options. When 
adding a PXI system to your power budget, you can take one of two options:

■■ 1. Use the maximum power consumption of a full PXI system as specified by the PXI chassis. 
For example, the maximum power consumption of a PXIe-1085 PXI Chassis is 791 W, which 
would translate to a budgeted power consumption of 554 W after applying an average utilization 
factor of 70 percent.

■■ 2. add the maximum power consumptions of all modules in the PXI system to get a very 
accurate power budget number. See Figure 6 for an example of performing a detailed PXI 
system power budget.

additionally, a modular instrumentation system is significantly more efficient than a traditional 
set of instruments because it removes the shared components like monitors and cooling that 
would have to be powered within a test system. 

as an example of an accurate power budget for a PXI system, consider a PXIe-1085 PXI Chassis 
with 24 GB/s system throughput that includes a PXIe-8880 PXI Controller, six PXIe-4139 precision 
system source measure units (SmUs), two PXIe-5162 PXI Oscilloscopes, a PXIe-6570 digital 
pattern instrument, two PXIe-4081 7 ½-digit digital multimeters (Dmms), and four PXIe-2527 
multiplexer switch modules. See a representation of how the PXI system power budget is 
calculated in Figure 6.

 

Figure 6. The total power consumption of a PXI chassis is the sum of all modules in the chassis. you can see above a full chassis of 
instrumentation that will, in the worst-case scenario, consume 526.9 W.

PXIe-8880 
PXI Controller 

123.4 W

PXIe-5162 
Oscilloscope 

34.8 W

PXIe-4139 
SmU 

34.65 W

PXIe-6570 
Digital Pattern 

Instrument 
68 W

PXIe-4081 
Dmm 
9 W

PXIe-2527 
Switch module 

10 W

Maximum Available Power in PXI Chassis is 791 W 
Maximum Total Power Consumption of the System is 526.9 W 

Power Consumption Taking into Account Average Utilization is 369 W
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Power Distribution Unit 
a PDU’s main purpose is to take an input power signal and distribute it to a number of outputs 
that power components of the system. These internal power outlets from the PDU have a rated 
voltage and current and are often available for both alternating and direct current. The best PDU 
options have a number of features:

■■ Remote on/off gives operators the ability to make changes in the power state with the power 
mechanism and EPO. In this way, the operator has full control of the system state from an 
easily accessible location. Operators also can disable the power in the system from the local 
and global EPO mechanism.

■■ Built-in circuit protection like fuses can protect valuable and fragile equipment from unexpected 
power events, which could save tens, or even hundreds, of thousands of dollars.

■■ Bank sequencing can ensure that specific equipment powers on first before other banks 
power on. For instance, a PXI chassis that is connected to an external controller, or extended 
from another master PXI chassis, needs to start before the host controller. In this case, the 
PDU should enable a bank of outlets that include the slave PXI chassis before starting the 
bank that includes the master PXI chassis.

■■ multiple banks that handle a given amount of power allow you to balance power loading on 
the PDU to prevent over-current conditions that could damage equipment in the test system. 
For instance, a PDU that has three banks of power outlets that can deliver 16 a on each bank 
prevents any one piece of equipment connected to the PDU from experiencing more than 16 a. 
It also means that you must be aware to distribute the current required for the equipment 
across multiple banks.

■■ DC supplies can provide power to items like status LEDs or cooling systems that run off of DC 
power with remote on/off and bank sequencing as well. Some of the items are even useful 
in the enable power state of a system, making a remote powering function necessary.

Figure 7. PDUs can have different connectivity and architectures. The PDU above has a single bank that can supply devices with up to 
16 a, and the PDU below has three banks that can supply 16 a each for up to 48 a.

1ø PDU, 16 A, 
110 V–240 V

3ø PDU, 48 A, 115 V-120 V/220 V–240 V

Bank 1 
Power Out

100–240 V 
Power In

Single-Bank Power Out

100–415 V 
Power In

Bank 2 
Power Out

Bank 3 
Power Out
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Powering Critical Components in the Test System
make sure that critical components like the host controller and sensitive instrumentation in 
your test system get power from the UPS. Some components of the test system are more 
important than they might seem at first glance. Without the cooling systems continuing to 
run after a power incident, the host controller may overheat. Without power to the touch panel 
monitor on the test system, a technician has no way of troubleshooting the failures or logging 
data of the power incident. Think about the items that you want to be operational, even after 
a power outage or emergency.

Powering System Overhead and Support
Remember overhead and infrastructure like temperature control, network connectivity, and 
user interface elements of the test system when allocating power. Having an outage in your 
production because of overheating or lack of network connectivity is just as detrimental as 
failures in test instrumentation.

Uninterruptable Power Supply
a good test system designer takes into account the quality of the grid and designs the system 
to avoid undefined behavior during power loss and brownouts. you can use UPSs to power 
critical components in the test system during these events and sometimes during normal 
operation as well.

a UPS can deliver power with a dependable voltage and current supply. It can also act as a 
battery power supply after a power outage or significant brownout. a UPS is a critical part of 
a rugged test system, especially one in a location with an unreliable power grid.

There are two major types of UPSs: 

Figure 8. a UPS is used to provide clean, reliable power that also allows for graceful shutdown in the case of a blackout or brownout. 
a double conversion UPS is always charging a battery that provides consistent power to the system.

Transfer Switch
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aC

Battery Inverter
Discharging (Power Fail)

Charging (Normal)

Double Conversion UPS Diagram

Static Bypass Switch

DC
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Line Interactive UPS
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Inverter
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Outgoing
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■■ Line interactive UPS—In a line interactive UPS, the active power line input is connected 
directly to the power output. The UPS then monitors incoming power to ensure that the 
power does not sag below a given threshold. If the power line does sag too low, it switches 
to a battery that is charged by running the UPS in reverse to power the output signal. In this 
case, the test system is receiving line power during operation without any conditioning and 
the UPS takes over power delivery in the case of a power failure.

■■ Double conversion UPS—Double conversion UPSs connect the incoming power line to  
a battery that charges continuously and then supplies power to the output line of the UPS. 
The power supply of a double conversion UPS is very consistent because it is delivering 
power from the onboard battery. a double conversion UPS has the added benefit of always 
being prepared to act as a backup power supply with a fully charged battery to allow critical 
systems to shut down gracefully if a blackout or significant brownout occurs without having 
to switch power supplies. although these UPSs are slightly less efficient, they provide an 
added value of always providing stable and accurate power inside the test system, which 
makes double conversion UPSs good choices for aTE applications.

Power Quality and Reliability
No power grid is perfect, yet most electrical devices are designed to operate under ideal power 
conditions. When the power from the grid varies from the power the system is designed to use, 
the system behaves in an unexpected manner. Instruments can take bad measurements or 
source incorrect signals. Devices and systems can switch on and off and lose important settings 
or default to incorrect settings. This unexpected behavior can lead to bad test results, damaged 
devices under test (DUTs), or worse. a double conversion UPS has the added benefit of constantly 
providing filtering by charging the internal battery with incoming power and providing a highly 
reliable, clean power source.

Blackouts and Brownouts
Blackouts occur when the power that the grid supplies completely turns off. Blackouts are 
fairly rare where there are well-developed power grids, and managing behavior of a system 
during these conditions can go two ways: (1) run some or all parts of the system off of a 
battery for a short time so that it can shut down properly or (2) let it turn off because of the 
lack of power. 

Brownouts and power surges are far more common in the grid, especially in facilities like 
factories with large power consumptions, and are more difficult to handle because they can 
cause indeterminate behavior in the system. a brownout can be any sag or glitch in voltage or 
current in the grid that causes less power to be delivered to the test system. a surge is a 
momentary instance of additional voltage difference or current than the grid normally provides. 

UPSs have an internal battery that allows for time between a blackout, or severe brownout, and 
a new power source, like a generator, coming online to provide enough power for essential 
equipment in the test system. Essential equipment includes the host controller and user 
interface and any other critical equipment. The time that the battery provides allows the system 
to maintain essential data and avoid corruptions or unsafe software states.
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Power States
It is often necessary for a test system to have multiple running statuses to allow for debugging 
maintenance, power saving, and safety. a good approach to test system design is to implement 
four states of operation: 

■■ Off—a system is entirely disabled with no power passing through the line filter or any internal 
test system components. 

■■ Enabled—Power is passing through the line filter and into any directly powered equipment. 
Usually, all equipment is powered through a PDU. In the enabled state, only primary or master 
outlets on the PDUs would likely be activated. In some cases, DC supplies on the PDUs 
are also activated to power system support and other components. For example, in the 
enabled state, an Ethernet router and real-time system controller could power on so that 
technicians can monitor the health of the test system. 

■■ On—a change to this state begins the main power on sequence of the test system. all PDUs 
receive power and enable outlets to other system equipment. In many cases, it is helpful 
or necessary to stage the power sequence when certain system components depend on 
others to be running when they start. Read more about PDUs in the Power Layout section.

■■ Emergency Power Off (EPO)— The EPO immediately cuts power to the test system when 
a user or system monitor recognizes an unacceptable operating condition.

Figure 9. a test system requires multiple power states including off, enabled, on, and EPO to ensure efficient operation.

�� System Power Disabled

�� No Facility Power to the Line Filter

�� System Power Enabled

�� PDU master aC Outlets Enabled

�� PDU DC Outlets Enabled (Individually Controllable)

�� PDU Standard Outlets Disabled

�� UPS Disabled

�� System Power Enabled

�� PDU master Outlets Enabled (DC Supplies—Fans, System Controller, ENET Router)

  – Individual DC Outlets Enabled (2 Bank Power-Up Sequence)

�� PDU Standard Outlets Enabled (2 Bank Power-Up Sequence)

�� UPS Enabled

�� System Power Disabled

�� No Facility Power to the Line Filter
Emergency 

Stop
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although the grounding path described is usually sufficient, grounding each piece of equipment 
in the test system individually can guarantee safety. a power entry panel from NI has a star 
grounding block, as seen in Figure 2, which is connected to other ground blocks throughout the 
rack. The grounding stud on the outside of the power entry panel can then be attached to a true 
earth ground outside the chassis. additionally, each piece of equipment will generally have a 
grounding stud that can be directly connected to a ground. you can see the grounding screw of an 
NI PXI Chassis in Figure 12. attaching each piece of equipment to the distributed grounding 
blocks throughout the chassis ensures that each one is grounded safely and that all ground 
leads are very short, which leads to less electromagnetic noise. 

make sure that electrical connections to ground plains are short. Long ground loops can cause 
standing waves that result in radio frequency emissions within the system. If long transmission 
lines are needed to connect to ground plains, couple the signal with the ground signal in a 
twisted pair configuration to cut down on electromagnetic noise. Include both the positive and 
negative references of the signal if it is floating, or not referenced to ground.

Figure 12. The PXIe-1085 PXI Chassis has a ground screw that allows you to directly ground the chassis and all instruments to an 
external grounding block. Grounding each piece of equipment in a rack is a best practice for guaranteeing safety.

Grounding Screw
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Emergency Power Off
When a test system encounters a serious issue or an emergency is taking place in the facility, 
operators need the ability to quickly and cleanly power off the test system. EPO mechanisms 
are included on test systems to simplify connectivity and inhibit power switching. Operators 
might use an EPO to reset a system in an error state, prevent damage to a DUT, or even prevent 
harm to themselves. EPO functionality is also required by the safety standards bodies such 
as IEC and UL.

an EPO is generally a physical mechanism like a button or switch that is easily accessible to an 
operator and, when pressed, cuts power to all test system equipment. Ideally, the EPO panel 
has connectivity with all equipment in the test system to ensure that everything is powered off 
quickly. most EPOs put systems into an off state that requires them to be reset to the enabled 
state before they can be reactivated and all equipment can power on. This prevents systems 
from unexpectedly restarting after a power off when there is an unsafe condition.

Figure 10. The EPO is connected to all equipment in the test system and can disable all connected equipment when necessary to 
maintain safety.
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Grounding
Grounding is a critical part of test system design for two main reasons: safety and 
measurement quality.

Ensuring that your test system has proper grounding to guarantee safety means giving all 
equipment in the test system a proper path for current to flow to a true or earth ground. The 
power entry panel must be connected to a power source that has a proper ground. you should 
then be able to choose any piece of equipment in the test system that is an end power consumer 
and follow its path to ground back to the power entry panel. Follow the ground current path for 
the Ethernet switch in the power layout of the example test system in Figure 1. The Ethernet 
switch ground is connected to the UPS ground, which should be connected to the ground of 
the PDU, which should be connected to the ground of the power entry panel. By creating a path 
for current that forms as a product of ground loops to flow to ground, you avoid building up 
dangerous charge in the system that could arc and cause damage or discharge into an operator 
or DUT. 

Figure 11. In some cases, a global EPO is necessary to disable all test systems and equipment in a facility. a global EPO is a single 
power off mechanism that enables the local EPOs of all individual systems.
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Learn all you need to know about making the right connections for your measurements by 
reading the white paper Comprehensive Guide for Field Wiring and Noise Considerations.

Best Practices for Components
There are nearly infinite ways to source materials and construct a test system. When building a 
system that you have to maintain over time, consider long-term support and the extensibility 
of the system to add future requirements. To achieve these results, it is best to source system 
components from commercial vendors that support products and consumers with long-term 
supply strategies. It can seem like commonsense to work with a vendor for items like PDUs, 
UPSs, system controllers, and instrumentation, but that same strategy can pay off long term on 
smaller items like interconnects and cables. a committed vendor that can supply connectors 
along with vendors supplying test instrumentation can keep your system running with 
reasonable effort for a decade.

On the rare occasion that special requirements or extenuating circumstances make using a 
commercial product impossible, many companies are experts in custom equipment and solutions 
for test systems. Keep in mind that these solutions are often for a single consumer and are 
more likely to change or become obsolete over time.

 

©2016 National Instruments. all rights reserved. National Instruments, NI, ni.com, and VirtualBench are trademarks of National Instruments. Other product and company names listed are trademarks or trade 
names of their respective companies.

Figure 13. Having long, unmatched ground wires in your system can cause significant ground loops and act as an antenna for noise 
signals. Using short ground lines is better, but still has the possibility of picking up unwanted noise. For the best performance, use 
twisted pairs of signal and ground wires in your system. 
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Introduction
many automated test applications require routing signals to a variety of instruments and 
devices under test (duTs). Often the best way to address these applications is to implement 
a network of switches that facilitate this signal routing between the instrumentation and the 
duTs. Switching not only handles this signal routing, but it is also a low-cost way to increase 
the channel count of expensive instrumentation while increasing the flexibility and repeatability 
of your measurements.

When adding switching to an automated test system, you have three main options: design 
and build a custom switching network in-house, use a stand-alone box controlled via gPIB or 
Ethernet, or use a modular platform with one or more instruments such as a digital multimeter 
(dmm). Switching is almost exclusively used alongside other instruments, so tight integration 
with those instruments is often a necessity. An off-the-shelf, modular approach can meet 
these integration challenges inherent in most common test systems. This guide will outline 
best practices for integrated switching and multiplexing into your test system.
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Switching Architectures
Switching can be a cost-effective and efficient option for expanding the channel count of your 
instrumentation, but it is not always the best option. There are four main types of switching 
architectures:

1. No Switching

2. Switching in Test Rack Only

3. Switching in Test Fixture Only

4. Switching in Test Rack and Test Fixture

The following table outlines the strengths and weaknesses of all four switching architectures. 

No Switching
In the first architecture, no switches are used to route signals between the devices under 
test (duTs) and the instruments in the test system. Such systems typically have a single 
instrument channel dedicated to every test point. 

TEST RACk

Host Computer

Test Instrument 1

Test Instrument 2

Test Instrument 3

Test Instrument 4

unit under Test

Figure 1. A test system without switching has a direct connection from each instrument to the unit under test.

Table 1. Pros and Cons of Various Switching Architectures

Flexibility Throughput Cost Low-Level Measurements (mV, μA, mΩ)

No Switching ○ ● ○  ●
Switching in 
Test Rack ● ◒ ● ○

Switching in 
Test Fixture ○ ◒ ◒ ◒

Switching in Test 
Rack and Fixture ● ◒ ◒ ◒

Below ○  Average ◒  Above ●
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Switching in Test Rack Only 
The second switching architecture uses only commercial off-the-shelf (COTS) switches to route 
signals between measurement instruments and duTs. Switching in the test rack provides a 
way to use existing switch products and offers the easiest path to expansion. It is important 
to choose a COTS switching platform that can offer a broad range of functionality and easy 
expansion options. Not doing so can result in higher expenditures because of test system 
redesign over the life of a tester. 

The PXI platform, for instance, offers more than 600 different types of switch modules that 
can route signals as high as 600 V, 40 A, and 40 gHz. NI alone makes 100 different PXI switch 
modules that you can configure in more than 200 different switch topologies.

Advantages of Switching in Your Test Rack
By using a COTS switching solution, you can save considerably on development time, 
including printed circuit board (PCB) design and driver development. Additionally, COTS 
switching improves test system scalability because you can now add more switching by 
purchasing additional modules from a switch vendor rather than redesign your entire  
test fixture. 

Furthermore, each switch vendor provides solutions with their own unique advantages.  
NI switches, for example, have an onboard EEPROm that keeps track of the number of 
instances each relay on the module is activated and other features to monitor relay health, 
such as functional and resistive relay tests. With these features, you can predict when a 
specific relay will reach the end of its mechanical lifetime, and thus conduct predictive 
maintenance. These features are especially useful when maintaining high-channel-count 
switch systems that can be extremely difficult to debug manually, or on a manufacturing 
production floor where unexpected downtime can cause significant and costly delays.

You can also use NI switch modules to increase the throughput of your test application by 
downloading a list of switch connections to memory onboard the switch modules and cycling 
through the list using bidirectional triggering between the switch and any instrumentation, 
without interruption from the host processor.

TEST RACk

Host Computer

Test Instrument 1

Test Instrument 2

Test Instrument 3

Test Instrument 4

TEST FIXTuRE

unit under Test

Figure 3. Some test systems integrate switching within the test rack for ease of expansion.
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Disadvantages of Switching in Your Test Rack
using switches can often slow down your test process because it requires you to take 
measurements from your test points on any given duT sequentially rather than in parallel,  
as discussed previously. Placing all of the switching within the test rack also increases the 
total amount of cabling. In addition to using cables between your switches and measurement 
instruments, you also need cables between duTs and the switch. This can cause error in 
sensitive measurements, such as leakage current or low-resistance measurements.  

Switching in Test Fixture Only
The third switching architecture uses switches in the test fixture only. In this case, signals 
from the measurement instrument are switched to various test points on the duT using 
individual relays placed on a PCB near the fixture or in the fixture itself. If you are using this 
architecture, you need a relay driver in your test station to control the individual relays from 
your test program. A good example of a COTS relay driver is the PXI-2567, which is a 64-channel 
relay driver module that allows you to use the NI-SWITCH driver to control the external relays 
using a standard API, removing the need for custom programming. Alternatively, you can 
design an external circuit to drive your relays, but this requires additional design work.

Advantages of Switching in Your Test Fixture
As mentioned before, switching helps reduce test cost, regardless of location. Additionally, 
building switches into your test fixture eliminates the need for cables between your duTs 
and the switches themselves. Reduction in cabling also helps decrease measurement error.

Disadvantages of Switching in Your Test Fixture
As discussed previously, using switches can often slow down your test process. Additionally, 
building custom switching into the test fixture requires PCB design experience, so this may 
not be an option for everyone. Switching within your test fixture also poses problems with 
the ability to scale your test system to accommodate more test points. 

TEST RACk

Host Computer

Test Instrument 1

Test Instrument 2

Test Instrument 3

Test Instrument 4

TEST FIXTuRE

unit 
under Test

Figure 4. Test systems with switches in the test fixture require a relay driver.
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Advantages of Not Switching
Cables and switches can often degrade the integrity of your signal. By not using switches, you 
can provide your signal with a more direct path to the measurement instrument and thus improve 
your measurement accuracy. In addition to improved measurement accuracy, you can achieve 
faster test speeds. By having a dedicated instrument for each test point, you can make parallel 
measurements rather than sequential measurements, and thus increase test throughput. 

Disadvantages of Not Switching 
Having a dedicated instrument for each test point can prove to be extremely costly. Another 
disadvantage is expandability. You can easily run out of space in your test rack if you build a test 
system without switching. This can cause you to completely redesign your test system, which 
can result in additional costs for hardware changes, software updates, and revalidation. For 
instance, suppose you have a test system that tests 20 resistance temperature detector (RTd) 
sensors in parallel using 20 PXIe-4081 digital multimeters (dmms). Now assume your system 
needs to expand to test 40 RTd sensors. To do so, you need to add 20 more dmms, which 
require 20 more PXI slots. Alternatively, you can use a single PXIe-4081 7½-digit dmm along 
with a switch to test all 40 RTd sensors sequentially, which requires as little as two PXI slots. 

When to Build a Test System Without Switching 
Building a test system without any switching is usually recommended if you are making either 
extremely sensitive measurements that would get distorted with the addition of cables and 
switches or if you need to keep test time to a minimum. For instance, some semiconductor 
test applications have a single parametric measurement unit or source measure unit dedicated 
to every pin on a chip, because semiconductors are a high-volume business and test costs 
often make up a significant portion of the total manufacturing cost of a chip. You can significantly 
reduce test costs by minimizing test time through parallel measurements with dedicated 
instrument channels. Additionally, in the semiconductor industry, testers are often built for 
specific chipsets or chipset families, so they are not usually expanded over their lifetimes.

Figure 2. Some semiconductor applications use dedicated instruments to test each pin on a given chip in parallel.
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Another disadvantage of this option is the cost associated with designing a custom board for 
specific safety and compliance standards. If you are testing a high-voltage device, you likely 
need to build a switching fixture that adheres to various regulations such as ul, CE, and VdE. 
It can be challenging to design a PCB filled with relays that complies with the creepage and 
clearance requirements of those various standards. In such cases, using COTS switches can 
help reduce costs. many COTS vendors certify their modules to comply with a wide range of 
safety standards. For instance, all NI switch modules that have a voltage rating greater than 
60 VdC or 30 VAC and 42.2 Vpk are considered high-voltage devices and therefore built to 
adhere to the following safety standards.

Switching in Test Fixture and Test Rack
The last switching architecture includes switches in the test station as well as the test fixture. 
using this paradigm, you can take advantage of the benefits of both COTS switching solutions 
and simultaneously minimize errors in specific, sensitive measurements by placing switches 
closer to the duTs and in the test fixture. By using the PXI-2567 relay driver along with other 
PXI-based switches, you can program your whole switch system, including both test rack COTS 
switches and custom relays in the test fixture, using a standard, well-supported driver API.

Advantages of Switching in Your Test Fixture and Test Rack
By placing COTS switches in your test rack and relays in your test fixture, you can build a 
switching system that scales easily and adds minimum errors into your critical or low-level 
measurements. using this architecture, you can place those switches being used to route 
sensitive signals in the test fixture and all of the remaining switches in the test rack. In addition  
to scalability, using COTS switches helps you take advantage of vendor-specific features, 
such as the relay count tracking and hardware triggering features in NI PXI switch modules.

Figure 5. NI switch modules meet a wide range of safety and compliance standards.

TEST RACk

Host Computer

Test Instrument 1

Test Instrument 2

Test Instrument 3

Test Instrument 4

TEST FIXTuRE

unit 
under Test

Figure 6. Test systems with switches in the test rack and test fixture provide great flexibility, but require additional design work.
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Disadvantages of Switching in Your Test Fixture and Test Rack
using switches can often slow down your test process because it requires you to take 
measurements from your test points sequentially rather than in parallel. Building custom 
switching into your test fixture can also be time-consuming and require a considerable 
amount of PCB design expertise, especially for high-voltage or high-frequency signals. 

How to Select the Best Switch for Your Application
In addition to switch location, you want to compare the various switch topologies and relay 
types to ensure your switching subsystem meets your signal requirements and test goals. 
For automated test applications, the term switch is often used to describe a COTS device 
that uses relays to switch signals between multiple duTs and instruments. Switches organize 
relays in various ways to create different switch topologies, such as general-purpose relays, 
multiplexers, and matrices. different relay types have various trade-offs, including size, signal 
rating, and life expectancy. This section describes common switching topologies, popular 
relay types, key switching specifications, and general tips and tricks for switching in an 
automated test system.

Common Switch Topologies
After you have decided that switching is ideal for your application, the next step is to select 
the best switching topology, or way of organizing the relays to build a larger switch network. 
most switch vendors categorize their switches into three main categories: general-purpose 
relays, multiplexers, and matrices. Some switches, such as PXIe-2524, are capable of multiple 
topologies, which gives you the ability to configure the topology in software. You can choose 
among five different topologies to meet changing requirements. When considering topologies, it 
is important to think about the total number of connections required, the maximum number of 
simultaneous connections, and the need to scale for future changes to the test system.

General-Purpose Relays
A general-purpose switch consists of multiple independent relays meant to be used independent 
of each other. A general-purpose relay is a great option when you simply want to make/break 
a connection within a circuit or switch between two possible inputs or outputs. Individual relays 
are often classified by their number of poles and number of throws. The pole of a relay is the 
terminal common to every path, and each position that a pole can connect to is called a 
throw. 

A single-pole single-throw (SPST) relay is similar to a standard light switch with on and off states. 
An SPST relay comes in two forms: Form A and Form B. Form A SPST relays are normally open 
until the relay is activated, which causes the relay contacts to touch, completing the circuit. 
Alternatively, a Form B SPST is normally closed until the relay is activated, which causes the 
relay contacts to break their connections, opening the circuit.

Form A

Figure 7. SPST relays come in two forms: normally open (Form A) and normally closed (Form B).

Form B
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A single-pole double-throw (SPdT) relay has a single pole, or common connection, that can 
alternate between one normally open contact and one normally closed contact. Every SPdT 
is categorized as either a Form C or Form d relay. When a Form C SPdT activates, the normally 
closed signal path is opened before the relay connects to the normally open contact. This SPdT 
relay operation is described as “break before make,” or BBm. Alternatively, actuating a Form d 
relay connects the normally open signal path before the normally closed signal path is opened. 
This SPdT relay operation is called “make before break,” or mBB.

A double-pole single-throw (dPST) relay is when two Form A SPST relays are actuated 
simultaneously, usually with the same coil and packaged together. A dPST is ideal when two 
signal paths need to be opened or closed simultaneously. You can build a dPST from two 
independently controlled Form A SPST relays, but there might be some time difference 
between actuating the two relays.

Figure 8. SPdT relays share one common pole between two possible throws, or connections.

TASk OPEN duRINg OPERATION OPERATION COmPlETE

Form C

N.C.     COm      N.O. N.C.     COm      N.O. N.C.     COm      N.O.

Form d

N.C.     COm      N.O. N.C.     COm      N.O. N.C.     COm      N.O.

Figure 9. SPdT relays also come in two forms: Form C and Form d.

Form C/d

Figure 10. dPST relays offer simultaneous control of two Form A SPST relays.
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Multiplexers
A multiplexer, or mux, is a way of organizing relays that gives you the ability to connect one 
input to multiple outputs, or one output to multiple inputs. multiplexers provide an efficient way 
to connect multiple duTs to a single instrument. However, this switching architecture requires 
more upfront knowledge of which duT connections need access to your various instruments.

multiplexers are sometimes built using multiple Form A SPST relays with the ends connected 
together. This method of building a multiplexer is simple and efficient, but its drawback is that the 
unused signal paths can cause AC signal reflections that degrade the bandwidth rating of the switch. 

 

Alternatively, multiplexers are sometimes built using cascaded levels of Form C SPdT relays 
to ensure the signal integrity of AC signals. This type of multiplexer often requires more PCB 
space, but it reduces any stubs or extra unterminated signal paths that might degrade the 
bandwidth of the switch.

Figure 11. 4 x 1 multiplexer Built from multiple Form A SPST Relays Tied Together
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Figure 12. 4 x 1 multiplexer Built From Cascaded levels of Form C SPdT Relays
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Matrices
A matrix is the most flexible switching configuration. unlike a multiplexer, a matrix can connect 
multiple signal paths at the same time. A matrix has columns and rows with a relay at each 
intersection, which gives you the ability to connect column-to-column, column-to-row, and 
row-to-row signal paths. With the flexibility of matrices, you can connect all switch channels 
to each other through various signal paths that do not need to be predetermined. It is 
recommended that you plan your switch routes during the hardware planning phase, but matrices 
give you the flexibility to make changes to the switch routes as test requirements change.

 

matrix size is often described as m rows by N columns (m x N) configurations. Some common 
configurations are 4 x 64, 8 x 32, and 16 x 16. However, in most cases, there is nothing special 
about rows or columns. A switch matrix can be transposed if it is easier for you to think in terms 
of more rows than columns, such as a 64 x 4 matrix instead of a 4 x 64 matrix.

Other Topologies
general-purpose, matrix, and multiplexer switches make up the vast majority of switches,  
but there are other specialized switching topologies such as a sparse matrix or a fault 
insertion unit (FIu). 

A sparse matrix is a hybrid combination, somewhere between a matrix and a multiplexer, 
generally used for RF applications. By connecting the COms of two multiplexers, you can create 
a pseudo-matrix with numerous rows and columns, but only one possible signal path can be 
connected at any given time. multiplexers typically offer more channel density than a matrix 
does, because a matrix requires at least one relay per row-column intersection. Therefore, a 
sparse matrix typically offers more channel density in a given space, but is limited by a single 
signal path between the rows and columns. Sparse matrices are also useful for AC applications 
where signal bandwidth might be compromised by the stubs created by the unterminated 
rows and columns of a traditional matrix.

Figure 13. matrices allow for maximum flexibility when routing signals. 
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Another specialized switching architecture is the FIu, which is commonly used in hardware-
in-the-loop (HIl) test systems. Hardware fault insertion, also known as fault injection, is a 
critical consideration in test systems that are responsible for the reliability of embedded 
control units, where it is imperative to have both a known and acceptable response to fault 
conditions. To accomplish this, FIus are inserted between the I/O interfaces of a test system 
and the ECu so the test system can switch between normal operation and fault conditions, 
such as a short to power, short to ground, pin-to-pin shorts, or open circuit. For more 
information on FIus, read the Using Fault Insertion Units (FIUs) for Electronic Testing 
white paper.

Figure 14. A sparse matrix is created by connecting the COms of two or more multiplexers, and is commonly used for switching RF signals.
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Figure 15. FIus allow for automated fault condition testing, commonly used to test the reliability of embdded systems, such as automotive ECus.
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Relay Types
A relay is a remotely controlled device that makes or breaks a connection in an electric circuit. 
There are various types of relays, but four of the more popular relay types are electromechanical 
relays, reed relays, solid state relays, and field effect transistor (FET) relays. Each relay type has 
trade-offs that can impact the performance, cost, life expectancy, and density of a switch system, 
which is why it is important to select the best relay type to fit the needs of your application. 

Note that the specs for an individual relay and a finished switch product differ in most situations. 
Relay specs, such as bandwidth, power rating, and contact resistance, refer only to the individual 
relay and do not include the PCB routes that connect the relays into a switch topology or the 
connector that provides the user with an interface to the switch topology. For example, a single 
relay may be rated for 0.05 Ω contact resistance and 300 V, but the finished switch product may 
have a larger path resistance (for example, 1 Ω), including multiple relays and PCB traces, and 
may not have the PCB creepage and clearance necessary to safely spec the switch product 
at 300 V.

Electromechanical Relays
An electromechanical relay (EmR), or armature relay, uses current flowing through an inductor 
coil to induce a magnetic field that moves the armature to the open or closed position, which 
completes the circuit by causing two contacts to touch. There are various types of EmRs, such 
as latching and nonlatching, that have small differences in operation. A nonlatching EmR uses 
a single coil and returns to its default position after the current stops flowing. Alternatively, a 
latching EmR remains in the position that it was switched to, even when the current stops 
flowing. Some latching EmRs use one coil and reverse the flow of current to reverse the direction 
of the magnetic field to push or pull the armature into the desired position. Other latching EmRs 
use a coil on either side of the armature to push the armature open or closed.

EmRs support a wide range of signal characteristics, from low voltage/current to high 
voltage/current and dC to gHz frequencies. Also, EmRs have low contact resistance, typically 
much less than 1 Ω, and can handle unexpected surge currents and high power, up to 300 W. 
For these reasons, you can almost always find an EmR that fits the signal characteristics a test 
system requires. However, EmRs take up a lot of PCB space, are slow compared to other options 
(150 cycles/s), and have shorter life cycles because of their moving parts (up to 10ˆ6 cycles). 

Figure 16. A single-coil electromechanical relay uses a magnetic field to open and close a mechanical switch.
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Because of these trade-offs, EmRs are a great choice when you need a durable relay rated for 
high power, high current, or high bandwidth, but you are not as concerned with relay speed 
and are willing to replace the relay as it degrades over time.

Reed Relays
Reed relays also use current flowing through an inductor to create a magnetic field used to 
connect physical contacts. However, reed relays can have much smaller and lighter contacts than 
EmRs. Reed relays use a coil wrapped around two overlapping ferromagnetic blades (called 
reeds) hermetically sealed within a glass or ceramic capsule filled with an inert gas. When the 
coil is energized, the two reeds are drawn together causing their contacts to complete a signal 
path through the relay. The spring force of the reeds causes the contacts to separate when the 
current ceases to flow through the coil.

Because reed relays can be smaller, you can fit more within a smaller footprint and they can 
switch faster than EmRs, up to 2,000 cycles/s. Also, their limited moving mechanical parts 
and isolated environment provide longer mechanical lifetimes, up to 10ˆ9 cycles. 

However, because of their smaller contact size, reed relays cannot handle as much power and 
are more susceptible to damage from self-heating or arcing, which can melt small sections of 
the reeds. If the two reeds are still connected when the molten section solidifies, the contacts 
may weld together. In this situation, the relay remains shut, or breaks one of the reeds if the 
spring force is enough to pull the two reeds apart. To protect against damage, monitor signals 
for large inrush currents that might be caused by hot-switching a capacitive load and use inline 
protection resistors to reduce the level and duration of the current spike. For more information 
on protecting reed relays, read the Reed Relay Protection white paper. The small size and high 
speed of reed relays make them a great choice for many applications. Reed relays are more often 
found on matrix and multiplexer modules rather than general-purpose switch modules. A good 
place to start is the PXI-2530B, which is a COTS switch that you can configure as 13 unique 
matrix or multiplexer topologies by swapping various front-mount terminal blocks. 

Figure 17. The spring force of the reeds causes the contacts to separate when the current ceases to flow through the coil.
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Solid State Relays
Solid state relays (SSRs) are electronic relays that consist of a sensor that responds to an input, 
a solid-state electronic switching device that switches power to the load circuitry, and a coupling 
mechanism to enable the control signal to activate without mechanical parts. They are often 
constructed using a photosensitive metal-oxide semiconductor, field-effect transistor (mOSFET) 
device with an lEd to actuate the device.

 
SSRs are slightly faster than EmRs, up to 300 cycles/s, because their switching time is 
dependent on the time required to power the lEd on and off. Because there are no mechanical 
parts, SSRs are less susceptible to physical vibrations that could damage the relay, which 
provides an unlimited mechanical lifetime. 

However, SSRs have their downsides. First, they are not as robust as EmRs and are easily 
damaged if used with signal levels outside of their rating. Second, they are expensive and 
generate more heat than alternatives. Finally, SSRs can have large path resistances, anywhere 
from less than 1 Ω to 100 Ω or more, because the connection is made through a transistor 
instead of a physical metal connection. most modern SSRs have improved path resistance to 
make this less impactful. 

unlimited mechanical lifetime of SSRs make them an excellent choice when you have 
small-to-moderate signal levels and you need a relay that can last through many relay cycles. 
An example COTS SSR switch is the PXI-2533, which is a 4 x 64 matrix rated for 55 W of 
switching power and offers unlimited mechanical lifetime. 

Figure 18. SSRs use photo-sensitive mOSFETs with an lEd to actuate the device.
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FET Relays
Similar to SSRs, FET relays are not mechanical devices and use transistors to route signals. unlike 
SSRs, the control circuitry drives the gates of the transistors directly instead of driving an lEd.

directly driving the transistor gate allows for much faster switching speeds than any other type 
of relay mentioned, up to 60,000 cycles/s. Also, the lack of mechanical parts make FET relays 
much smaller and less susceptible to shock and vibration issues than electromechanical or reed 
relays, which affords FET relays an unlimited operational lifetime. However, FET relays have a 
much higher path resistance than any other relay option, typically in the 8 Ω to 15 Ω range, and 
they lack physical isolation and thus may be used with only low-level signals.

FET relays are an excellent choice for low-level signals and applications that require fast relay 
operation or unlimited mechanical life. An example of a COTS FET switch is the PXI-2535, 
which is a 4 x 136 matrix that can perform relay operations in less than 16 µs. 

Switch Expansion
If you build your own switching topology, then you can create a matrix or multiplexer to meet the 
exact dimensions of your application. However, many customers use COTS switches to reduce 
development effort and most COTS switches have fixed dimensions. Therefore, it is important 
to know how to combine multiple matrices or multiplexers to create a larger matrix or multiplexer. 

Multiplexer Expansion
The easiest way to expand the channel count of a multiplexer is to directly tie the COms of 
multiple multiplexers together. With this approach, there is some risk of shorting input channels 
together and possibly damaging your hardware. Therefore, you need to ensure that only one of 
the channels is connected to a COm at any given time. Some switching software, such as Switch 
Executive, gives you the ability to define software exclusions that prevent multiple input paths 
from being connected to a COm at any given time. Another downside to this approach is that 
the unused and unterminated routes result in stubs, which adds capacitance and degrades 
high-frequency performance.

Table 2. Comparison of Relay Options

Capability Armature Reed FET SSR

High Power ● ◒ ○ ◒
High Speed ○ ◒ ● ◒
Small Package Size ◒ ● ● ●
low Path Resistance ● ◒ ○ ◒
low Voltage Offset ◒ ○ ◒ ●
Extended lifetime ○ ◒ ● ●

Below ○  Average ◒  Above ●
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Another approach is to connect the COms of multiple multiplexers through an additional 
multiplexer, which inherently allows only one channel path to a COm but requires more 
multiplexers. However, this approach still results in PCB trace stubs that can degrade 
bandwidth performance.

Figure 19. An 8 x 1 multiplexer is created by tying together the COms of two 4 x 1 multiplexers.
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COm

For high-frequency applications, you should use Form C SPdT relays to create a large multiplexer. 
This option ensures there are no stubs along the active signal path, which helps increase the 
bandwidth of the switch.

Figure 20. An 8 x 1 multiplexer is created by switching the individual COms of two 4 x 1 multiplexers through an additional multiplexer.

Figure 21. An 8 x 1 multiplexer is created by cascading three 4 x 1 multiplexers with Form C SPdT relays.
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Matrix Expansion
Switch matrices can also serve as building blocks for creating larger configurations that are well 
beyond the size of a single COTS matrix switch. There are two ways to expand matrices. Column 
expansion is the process of connecting each row between two or more matrix modules, 
effectively doubling the number of columns within the expanded matrix. Alternatively, row 
expansion is the process of connecting each column of two or more matrix modules, doubling 
the number of rows within the expanded matrix.

For easy matrix expansion, some COTS matrix switches, such as the PXIe-2532B, offer specialized 
cables to combine matrices by easily connecting rows of multiple switch modules. However, all 
matrices are expandable, even if there are no prebuilt accessories to do so. To expand a matrix 
manually, you can use external wires to connect the rows or columns of individual matrices. 
For more information on matrix expansion, including examples and frequently asked questions, 
read the Matrix Expansion Guide for PXI Switch Modules.

Key Switching Specifications
In addition to relay type and switch topology, it is important to ensure that your switching 
subsystem maintains the signal integrity of the connected signals. most switches fall into two 
categories based on signal types: low-frequency/dC and RF.

Low-Frequency/DC Switching Specifications
Switches typically advertise voltage and current ratings, but you should also pay attention to the 
maximum switching power specification, which refers to the upper limit of power that the contacts 
can switch. For example, a 150 V, 2 A switch may be limited to 60 W switching power and should 
not be used with 150 V at 2 A (300 W). Therefore, it is important to consider the maximum power 
of your signals in addition to your maximum voltage and current levels. 

Figure 22. 16 x 32 matrix Created by Column Expansion
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Signal frequency is also a tricky topic when dealing with switches. many times, a signal is 
described with its fundamental frequency, which is fine for a simple sine wave. However, if you 
plan to switch square-shaped signals, or signals with sharp edges, then it is important to remember 
that a square wave has harmonic frequencies well above the fundamental frequency, which help 
shape the sharp edges. If you plan on switching a square wave, choose a switch rated for seven 
to 10 times the fundamental frequency of your signal. For example, if you were to route a 10 mHz 
square wave through a switch rated for 10 mHz, the output would look closer to a sine wave 
than a square wave. 

For more information on switch bandwidth, read the Selecting Switch Bandwidth white paper.

Switch path resistance, thermal EmF, and offset voltage can affect low-level signal 
measurements, such as dmm resistance measurements. Therefore, you should select a 
switch that minimizes the effect on your measurements and design a measurement 
technique to compensate for these sources of error. For more information on how to reduce 
errors when switching low-level signals, see one of the following white papers:

Part I: How to Reduce Errors When Switching Low-Voltage Signals

Part II: How to Reduce Errors When Switching Low-Current Signals

Part III: How to Reduce Errors When Switching Low-Resistance Signals

Figure 23. Square-shaped signals have harmonic frequencies well above the fundamental frequency.
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RF Switching Specifications
A switch that is rated for more than 10 mHz or 20 mHz is often called an RF switch. RF 
switches typically have lower channel density to preserve signal integrity, so RF switches 
should be reserved for signal paths that require the increased bandwidth. However, topology 
and bandwidth do not provide you with enough information to select an RF switch. 

All RF switches have a rated characteristic impedance, which is a transmission line parameter 
that determines how propagating signals are transmitted or reflected in the signal path. 
Component manufacturers specifically design their equipment to have a characteristic 
impedance of either 50 Ω or 75 Ω, because all components in an RF system have to be 
impedance matched to minimize signal losses and reflections. 50 Ω RF systems make up the 
bulk of the RF market and include most communications systems. 75 Ω RF systems are 
smaller in number and are prevalent mainly in video RF systems. It is crucial you ensure parts 
such as cables and connectors in addition to other instruments that may reside in the test 
system are all impedance matched. 

In addition to bandwidth and characteristic impedance, there are other RF switching specs 
that directly affect your signal integrity, such as insertion loss, voltage standing wave ratio 
(VSWR), isolation, crosstalk, and RF power. Insertion loss is a measure of the power loss and 
signal attenuation that occurs as a result of passing the signal through the switch. VSWR is 
the ratio of reflected-to-transmitted waves, specifically the ratio of maximum (when reflected 
wave is in phase) to minimum (when reflected wave is out of phase) voltages in the 
“standing wave” pattern. Isolation is the magnitude of a signal that is coupled across an open 
circuit and crosstalk is the magnitude of a signal that is coupled between circuits, such as 
separate multiplexer banks. 

An interesting thing about RF switches is that all of these specifications vary depending on the 
signal frequency. Therefore, when choosing an RF relay or switch, you should compare specs 
at the specific frequency of your signals. Otherwise, it is easy to misinterpret the performance 
of an RF switch.

For more information on RF switch selection, read the Understanding Key RF Switch 
Specifications white paper.

Figure 24. Characteristic Impedance of a Transmission line
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Switching Tips and Tricks
When planning the switching portion of an automated test system, a few general tips can 
help you build an efficient switching system that preserves signal integrity.

Total Test Points Versus Simultaneous Connections
When using a matrix, consider the maximum number of possible connections and the maximum 
number of simultaneous connections. If you simply focus on the total number of possible 
connections, then you often end up with entire rows dedicated to each I/O pin of each instrument. 
However, this approach can lead to unnecessarily large matrices. For example, if you have 22 
instrument pins and 106 duT test points, then you might suggest a 22 x 106 matrix (2,332 relays) 
with the 22 I/O pins connected to the rows and the 106 duT test points connected to the columns. 

However, if you only need to connect at most four instrument pins at any given time, then 
the 22 x 106 matrix is unnecessarily large and wasteful. Instead, you could consider placing 
the instruments on 22 additional columns and use the rows for routing between columns. In 
this case, you would reduce the matrix size to 4 x 128 (512 relays), nearly 20 percent of the 
original size. This can save you space and money without affecting the test time or quality.

Figure 25. many RF switch specifications vary with signal frequency.
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N-Wire Switching
many matrix or multiplexer switch modules can switch two or four signal paths within a  
given topology instead of the standard 1-wire switching mode. You can use 1-wire switching 
to route various signals to an instrument that might reference a single signal or ground when 
performing measurements. 

Figure 26. Place instruments on columns and use rows for routing to conserve matrix space during sequential test execution, but 
keep instruments in rows for faster parallel test requirements. 
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Sometimes more than one signal needs to be switched at the same time. A 2-wire, or differential, 
switch provides two signal paths that you can control with one command. This provides an 
easy way to switch differential signals, which offers a great common-mode noise rejection. A 
4-wire switch is typically reserved for 4-wire resistance measurements, which use two leads 
for excitation and another two leads to measure the voltage drop across the duT.

Figure 28. Switch multiple signal paths at the same time using 2-wire or 4-wire switching.

Figure 27. Single-ended multiplexers are great for measurements that reference a shared signal or ground.
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Switching Power
many times, a test requirement plan includes maximum voltage and current levels, but 
instantaneous power is often overlooked. A switch or relay may be rated for 100 V and 2 A, 
but that doesn’t necessarily mean it can handle 200 W. many switches have maximum power 
ratings completely separate from their voltage and current ratings. For example, a common 
reed relay might be rated for 100 V and 500 mA, but it may have a maximum power rating of 
10 W. Therefore, you should consider your maximum instantaneous power levels when 
selecting your switches.

Separate High-Level Signals From General or Low-Level Signals
Switches rated for high-power or high-frequency signals generally have lower density than 
switches for general-purpose signals. Therefore, you should isolate your high-power or high-
frequency signals from your main switching system to preserve the channel density of the 
main switching system. If you try to build a single switch for all of your signals that is spec’d  
to handle your high-level signals, then it will likely end up large and expensive.

Compare RF Specs Based on Signal Frequency
When comparing RF switches, you should evaluate specifications based on signal frequency. 
many RF specs, such as isolation, VSWR, insertion loss, and RF carry power, vary depending 
on the signal frequency. For an accurate comparison, look in the detailed switch specs to find 
the specs at the frequency of interest. Additionally, some switch vendors publish guaranteed 
and typical specs for each category, while others publish only typical specs that will appear to 
be much better than guaranteed specs.

Consider Hardware-Triggered Switches for Maximum Switching Speed
In many automated test scenarios, time is money. many switches are controlled individually 
using software commands, with bus latency and software overhead added to each switching 
operation. Some switches offer hardware timing and triggering, which gives you the ability to 
load a list of switch connections to memory onboard the switch and use hardware triggers to 
advance through the list of connections. After each switching operation is complete, the switch 
can send out triggers to your instrumentation, starting the next measurement. 

This operation is called switch handshaking and can eliminate the software overhead and bus 
latency associated with traditional software-triggered switches. Switch handshaking is especially 
important for faster relay types, such as FETs or SSRs, where the software overhead and bus 
latency make up a larger portion of each switching operation. An application using switch 
handshaking with reed relays might realize a 10X improvement in total switching time, while 
an FET switch might see a 100X improvement or more. The faster a relay, the more that switch 
handshaking can improve throughput.
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Next Steps

NI Switch Products
Whether you are performing high-accuracy, low-speed measurements on a dozen test points 
or high-channel, high-frequency characterizations of integrated circuits, NI delivers a flexible, 
modular switching solution based on PXI to help you maximize equipment reuse, test throughput, 
and system scalability.

learn more about NI PXI switch products

Switch Executive
Switch Executive is an intelligent switch management and routing application that accelerates 
development and simplifies maintenance of complex switch systems. The point-and-click graphical 
configuration, automatic routing capabilities, and intuitive channel aliases make it easy to design 
and document your test system.

learn more about Switch Executive 

NI Switch Health Center
To simplify relay maintenance and increase reliability in high-channel-count systems, the  
NI Switch Health Center verifies the condition of each relay by sending a test signal through 
every route in a switch. The health center alerts users if it determines a relay has failed, is 
stuck open, or is stuck closed, and reports changes in resistance to determine whether a 
relay is nearing the end of its usable life.

learn more about the NI Switch Health Center

©2016 National Instruments. All rights reserved. National Instruments, NI, and ni.com are trademarks of National Instruments. Other product and company names listed are trademarks or trade names of their 
respective companies.
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Introduction
most test systems are designed fundamentally around two concepts: efficiency and cost. 
Whether working in the consumer electronics industry or in semiconductor production, test 
engineers  are concerned about individual test time and total throughput of a test system, and 
how these affect resources. When applications grow large enough to constitute multiple tests, 
a variety of instruments, and several units under test (uuTs), they inevitably require the oversight 
of test executive software to continue to address their cost and efficiency concerns.

Test executives are typically implemented as in-house solutions, or purchased as a commercial 
off-the-shelf (COTS) products. In the prototypical build versus buy argument, a test architect must 
determine whether it makes more sense to write a custom test executive or to invest and 
integrate an existing solution. Before deciding whether to build or buy a test executive, it is 
necessary to understand the purpose and core functionalities of this kind of software. This 
guide summarizes key functions of a test executive and explores practical scenarios to apply 
this knowledge.

Background
a test executive can automate and streamline large test systems. Sitting at the top of the 
software stack, it consolidates common functions, such as test execution, result collection, 
and report generation, up from the individual test level. The features of this solution are not 
unique to a particular uuT, so a variety of applications can use the test executive as a framework. 
This means that developers writing test code in g in labVIEW software, C, .NET or other 
languages can focus on the intricacies of testing a particular device, while common functions 
across all uuTs are maintained at the top-level test executive. Overall, the test executive 
defines such common functions in a manner that proves efficient from a development, cost, 
and maintenance perspective.

Figure 1. Test executives allow the separation of individual test development from the architectural needs of the entire test system by 
accomplishing tasks common across all tests at a higher level of abstraction.
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Features of a Test Executive
depending on the size of a company, the scale of a particular tester, and the variety of devices 
under test, complexity of a test executive can range from simple to advanced. This guide 
outlines common features that this software might contain. Some features are crucial to all 
implementations of a test executive, while others represent additional functionality that 
may not be strictly necessary. Each feature outlines an estimated amount of development 
time to complete. These estimates are based on experience with hundreds of automated 
test customers, as cited in Test Executive Software—Build or Buy? A Financial 
Comparison Using NI TestStand.

Test Sequence Development Environment
a test executive provides a development environment in which to architect test sequences. 
This feature is both fundamental— providing the development interface for the whole execution—
as well as complex. Sequence architecture encompasses the ability to implement branching or 
looping logic, a means to import test limits, and the specification and organization of individual 
test code. Interfacing with test code requires flexibility across a variety of built formats, such 
as dlls, VIs, and scripts, as well as integration across different development environments. 
Test executives may also use test code that originates from a source code control provider.

Implementing a test sequence development environment in a custom-built test executive 
can take around 100 person-days to complete, whereas a commercial solution provides this 
environment outright. This feature requires the most development time for an in-house solution 
because of the range of functions that a development environment provides. However, it is 
fundamental to the sequence architecture experience and cannot be omitted.

Figure 2. a productive sequence development environment gives test engineers the ability to develop and debug complex 
sequences that call into existing test code.
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Custom Operator Interface
The operator interface is the display through which the operator interacts with the test system. 
It typically allows for the selection of key input parameters, such as uuT identifier, test sequence 
to execute, or report path. It also contains a Run or Start button to control execution. many 
large test systems today require a professional guI differentiated by application or company 
and written in the programming language of developer choice. In addition to customization, 
this highly functional interface includes the ability to load, display, and run test sequences 
complete with interactive user prompts, execution progress indicators, visualization of test 
data, and localization.

Implementing a custom operator interface can take a range of eight to 32 person-days’ worth 
of development time. a COTS solution can reduce this estimate because of existing libraries 
and uI controls. developing a custom operator interface can be a nontrivial time investment, 
regardless of whether the test executive solution is built or bought. Test engineers who do 
not feel this component is crucial to their system may instruct operators to work through the 
development environment instead.

Sequence Execution Engine 
a core provision of the test executive is a sequencing engine. The sequence execution engine 
is responsible for all the actions required to evaluate a uuT. This includes calling individual 
test code, creating a flow for execution between tests, and managing data between tests. 
The sequencing engine is what executes a given test sequence, whether in the development 
environment, through a custom operator interface, or on a deployed tester. 

Implementing a sequence execution engine requires a minimum of 15 person-days to develop 
in-house. However, it is a must-have feature of all test executives.

Figure 3. a customer operator interface uniquely identifies the uuT, company, application, test, and role of the operator for a given 
test sequence. 
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Results Reporting 
given the abstracted role of the test executive, this piece of software is responsible for consolidating 
individual test data, storing temporarily into memory, and publishing comprehensive test results. 
Reports can come in a variety of formats, including xml, text, HTml, and aTml. data may also 
be pushed to a database following execution. The test executive makes this variety in formats 
possible through extensible reporting options. Results reporting is a necessary component of 
many test systems.

developing result collection and a report generator from scratch can take around 15 person-days, 
depending on the specific report required. given a built-in report generator in a COTS solution, 
results reporting can be customized to meet the needs of an application in a person-day or less.

User Management
It may be necessary to separate roles and responsibilities at the test executive level. user 
management tools effectively compartmentalize the responsibilities between the overarching 
test architect, the individual test developer who writes and debugs test code, and the operator 
or production manager who runs the test. Functions available to a given user may even be 
password protected to prevent misuse of the test sequence. 

Implementing a user management system in a custom test executive takes about five person-
days’ worth of development time. although not necessary for the use of a test executive, user 
management tools do not require a significant amount of developer effort to implement and 
can simplify the enforcement of test executive responsibilities.

Table 1. Similar to Windows file permissions, a user manager separates the roles and responsibilities associated with a test executive.

Figure 4. Part of a test executive’s role in a test system is to consolidate results across an execution and publish to a report or 
database.
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Parallel Testing Capabilities
Parallel test involves testing multiple devices at the same time, while still maintaining proper 
code-module performance, result collection, and uuT tracking. Parallel test approaches range 
from pipelined execution, where test order is maintained, but the test executive can test across 
multiple sockets concurrently, all the way to dynamically optimized, batch, or other complex 
execution styles.

Implementing parallel test is typically the most time-intensive for a test executive developer, 
and can take 100 person-days to develop from scratch. although parallel test may require a 
large amount of time to develop, the ability to scale up an execution to mitigate throughput 
needs in a large test system is often crucial. many organizations do not consider parallel test 
when first implementing a test executive, and learn later that it is a function they ultimately 
need and cannot settle on.

Unit/Device Tracking and Serial Number Scanning
When testing across multiple uuTs, it can be necessary to uniquely identify and track each 
device tested. This information can be stored alongside test results for specific analysis at the 
unit or batch level, or to pinpoint the source of error when things go wrong. device tracking 
can range from manual entry by an operator on a keyboard, to a fully automated scanner that 
loads uuT information after reading a barcode.

developing this type of functionality can take five person-days from the ground up, or about 
one person-day to customize when provided by a COTS solution. uuT tracking is not required 
for every test system. However, it is useful where high-volume, high-throughput testing is 
needed, such as the semiconductor or consumer electronics industries.

Figure 5. Parallel test capabilities allow for dramatic increases in system throughput without a re-architecture of the test executive.
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Test Deployment Tool
most large test systems are not architected in isolation; they represent solutions for multiple 
test sites or for an entire production floor. a test executive plays a key role in system deployment 
by providing a mechanism or utility to package the entire software stack into a built, distributable 
unit. a test system can be distributed in a variety of ways—an architect may be looking to deploy 
an image of the test system or a fully functional installer containing all necessary dependencies 
and run times. more information on this topic is covered in the white paper from the Fundamentals 
of Building a Test System series, Software deployment.

deployment is a nontrivial task, and it can take a team of developers as many as 20 person-
days to implement from scratch. With an out-of-the-box deployment utility from a commercial 
test executive, it still may take three person-days’ worth of time to successfully deploy. given 
the applicability of this feature to multiple test sites, it is often necessary to have in a test 
executive solution.

Maintenance
Just as with any other component in a large test system, test executives must be properly 
supported to ensure their performance over time. This encompasses expanding to include 
new tests, maintaining compatibility across software or OS upgrades, and fixing any bugs 
that are detected. maintenance of a test executive solution even extends to the realm of 
documentation. This is a crucial resource that operators, developers, and architects rely on 
when working with a test executive.

although it is difficult to predict the needs of a given tester, 15 percent of the initial time spent 
to develop a custom test executive is spent annually in maintenance. Total development time 
includes the estimated 20 days required to produce adequate documentation. The granularity 
of support for a test executive can vary, which changes these cost estimates dramatically. 
However, it is inadvisable to implement any test executive solution with the minimum in 
maintenance efforts. 

Figure 6. deployment involves packaging all necessary components of a test system through a deployment tool or build server, 
before distributing to the wanted test stations.
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Practical Scenario 1
Jonathan is a test engineer in the design lab at a small company that provides low-cost 
consumer electronics. a remote controls each device, and Jonathan specializes in writing test 
code to validate the transmitter-receiver communication between the remote and the prototype, 
before the device is sent to production. With his company’s recent expansion, Jonathan has 
less time per device to perform the requisite testing. He needs to automate the execution of 
his existing validation code, so that he can spend more time writing code for new devices. 
Therefore, he decides to employ a test executive to sequence through his test code.

The table below shows the needs that Jonathan identifies in a test executive.

Jonathan decides to build a test executive in-house. He does not have complex sequencing or 
reporting needs, and does not have plans to deploy this system to other users or test stations. 
If he purchased a commercial solution, he would not see the return on investment as the majority 
of features would not be used. Instead, relying solely on his software knowledge and previously 
purchased application software, he can develop a sequencer to meet his needs in as little as 
10 person-days.

Jonathan builds his test executive in labVIEW software. He architects a solution with a simple 
interface that gives operators the ability to call a predetermined set of test steps and select 
the path of the TdmS log. Jonathan can occasionally make small changes to the sequencer as 
he introduces additional tests for a new prototype. Overall, the design lab sees an increase in 
productivity thanks to the implementation of this sequencer.

Table 2. Jonathan’s needs in a test executive solution center on simple automation of existing validation code.

FEaTuRE ImPlEmENTaTION

Test Sequence  
development Environment 

Jonathan needs a development environment in which to architect his sequences. The test code 
he has been working with is already fairly modular, so he should only have to call and loop over 
test code within this environment.

Custom Operator Interface

Jonathan wants to be able to execute a set of test code with minimal interaction. He wants to 
have to specify only a few relevant parameters to identify the device, wanted tests, and report 
path. However, given that he is the end-use operator, it is not crucial to have an interface 
separate from the development environment.

Sequence Execution Engine 
This is the core need for Jonathan’s test executive solution. Each test consists of several 
individual labVIEW VIs that must be executed sequentially.

Results Reporting 

The existing test code currently prompts the user to generate a new Technical data management 
Streaming (TdmS) file for a given prototype. Each subsequent VI deposits minimal test results 
into this same file. The test executive needs only to automate the creation of this TdmS file, and 
then execute the remainder of the test code to generate results according to convention.

user management
user management is not a priority, because Jonathan plans to architect, develop, and operate 
this test executive.

Parallel Testing Capabilities Jonathan executes his tests on only one prototype at a time, so uuT volume is not a concern.

unit/device Tracking and 
Serial Number Scanning

given that testing is done on design prototypes, there are no assigned serial numbers to track. 
Instead, Jonathan tracks each uuT by a unique name that the operator enters at run time.

Test deployment Tool
Jonathan does not intend to deploy this code to additional testers. His test bench is unique  
to the design lab, and separate from the manufacturing facilities.

maintenance
This project belongs exclusively to Jonathan. He will implement and maintain whatever test 
executive is selected. He does not plan to document his work, as he will be the sole person  
to work on and use this test executive.
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In this particular case, a custom-built test executive proved to be the best option for Jonathan and 
his criteria. Often, an in-house solution is the first step taken when scaling up to sequencing 
or full automation, and may be more appropriate overall for a test bench application when 
compared to the needs of a production setting.

What If…
■■ after a few months, a new test engineer is hired into the design labs and begins to assist 

with the testing process. How will this engineer learn how to operate the sequencing tool, 
or effectively troubleshoot any errors or bugs that appear?

■■ Jonathan transfers to another department, or leaves the company. How is the knowledge 
required to update or fix the sequencer maintained?

■■ It becomes necessary for the sequencer to perform a functional evaluation of an entire 
prototype. How would it incorporate additional test code that different engineers write in 
other languages, with different programming paradigms and reporting techniques?

■■ The test executive is ported to a production setting to ensure consistency in testing. Can these 
solutions scale up to such needs?

Practical Scenario 2
dave’s company is designing a new functional tester to be implemented at the end of a 
manufacturing line. Currently, uuT testing is performed by manually executing across a series 
of existing, disaggregate pieces of code. This process significantly limits throughput of the 
line, and dave wants to employ a test executive in automating this process. The company 
does not standardize on a test executive, and each group typically chooses its own from 
within a small pool of commercial solutions and innumerable custom-built solutions.

The table below shows the set of requirements that dave outlines for the tester.

Table 3. dave’s evaluation of test executive software is driven by underlying throughput requirements on functional testers.

FEaTuRE ImPlEmENTaTION

Test Sequence  
development Environment 

a productive development environment that supports key features of a test executive is a must. 
The environment must enable the sequencing of labVIEW, .NET, and Python code.

Custom Operator Interface
dave ultimately wants an operator interface that is customized to the company. He also wants  
to remove most functionality beyond a Run button.

Sequence Execution Engine This is an obvious need for this system to address throughput needs.

Results Reporting 
Currently, each test individually logs data to an SQl database. There is a need for consolidated 
result collection by the test executive, with aggregate results communicated to the database  
and identified by a serial number.

user management
The majority of interaction with a tester occurs at the production level by the operator.  
dave prefers a user management tool or customizable interface that removes development 
privileges from the operator’s view.

Parallel Testing Capabilities
as long as tester throughput matches production throughput, dave does not need to test multiple 
uuTs at once.

unit/device Tracking and 
Serial Number Scanning

a serial number identifies each component and assembled uuT. a barcode scanner is used to 
track such information. The test executive must be able to propagate such information across  
the different tests it executes.

Test deployment Tool dave needs to deploy the final product to 10 additional testers.

maintenance
The test engineering department will maintain the test executive, either in full capacity for an 
in-house solution or where needed for a COTS option.
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To make his decision, dave also weighs the financial considerations of the tester. He estimates 
that a new tester will consist of a large, high-performance PxI chassis and embedded controller 
pair. Because of the nature of tests required to evaluate the uuT, the chassis will contain several 
modules that range from daQ cards and PxI instruments, such as digitizers and arbitrary 
waveform generators, to RF test equipment. The cost of each tester will sit at around $100,000 
uSd regardless of the test executive solution.

When evaluating the software stack, dave notes that purchasing a COTS solution adds to the 
project cost. a development license of the test executive costs a few thousand dollars, with 
the added cost of $500 uSd per additional tester for a license to deploy.

dave believes he can save on test executive cost by building a custom solution in Python. 
The language is open source and the development environment is free—both are benefits he 
believes will more than offset the additional development time required to build a test 
executive in-house. 

The test engineering team is proficient in Python, which delivers core functionality—a 
sequential sequencing engine, database connectivity, and code reuse of their existing 
tests—in the required timeframe. The test executive is successfully deployed to the 
manufacturing lines. The test engineers are occasionally called in to fix bugs in one or more 
of the testers.

What if…
■■ Production demands on the manufacturing lines increase, such that the existing test 

executive cannot meet throughput needs. It is necessary to scale up to parallel test.
■■ How much additional development time would it require to attempt to implement  

this functionality? How does this affect the cost comparison of a custom versus  
COTS solution?

■■ assume throughput needs of the tester cannot be met because of known 
multiprocessing limitations in the Python language. dave’s team is faced with 
purchasing additional hardware to reuse the current solution, or pursuing another  
test executive altogether. How does this further affect the cost comparison of a  
custom versus COTS solution? 

■■ The test engineering team cannot always service or upgrade the test executive because  
of other priorities.

■■ How is production affected when such needs arise and the team cannot help? How  
does this downtime factor into system maintenance costs?

■■ How is the time that the test engineering team spends maintaining the tester 
quantified? How does this factor into system maintenance costs?

Practical Scenario 3
Karen works at a company that designs and produces small medical devices. Each product 
has its own fully automated production line. although each group enlists a test executive for 
top-level system management, the company has not standardized on a solution. Recently, a 
new test manager has come aboard and expressed interest in test executive standardization. 
Karen is tasked with the responsibility of selecting the commercial solution, existing in-house 
product, or new development effort to act as the de facto test executive.
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Karen compiles the following list of requirements across the assorted groups responsible for 
each product.

given this criteria, Karen eliminates all of the existing in-house solutions. most of them were 
architected as part of a focused effort to get a single tester off the ground. There is little 
consistency in architecture that would lend for extensibility into other production lines, 
specifically in terms of sequencing needs, operator interface customizations, and effective 
deployment practices. additionally, it has already proven difficult to track down the test 
engineer responsible for a given test executive when a problem occurs in the software, or  
a modification is made to the device.

Instead, Karen proposes a commercial solution to her manager. The test executive is made by a 
well-known vendor whose other hardware and software tools are already used in the testers. 
Out-of-the-box features of this test management software can meet the range in sequencing 
paradigms that testers require, and employ the specific reporting format needed. The test 
executive includes a set of tools designed to meet some of the other testers needs, including a 
user management tool and deployment utility. given that a commercial vendor maintains it, 
Karen’s manager should not have to worry about incompatibility across OS migrations later.

Table 4. Karen’s interest in a test executive solution stems from standardization needs across a variety of testers.

FEaTuRE ImPlEmENTaTION

Test Sequence  
development Environment 

The test developers require a flexible development environment that, specifically, can  
interface with their labVIEW and VB.NET code. Tortoise SVN is used for source code control, 
and integration with this tool is required.

Custom Operator Interface
The test manager wants to customize operator interfaces according to the product being built  
or tested. Operators have reported they want a progress indicator to update test status when 
overseeing a tester.

Sequence Execution Engine a definite requirement for all testers.

Results Reporting all production systems must conform to a company-wide, HTml reporting standard.

user management
The test engineering team consists of a few system architects and a larger number of test 
developers. The test manager wants to separate responsibilities between these two roles.

Parallel Testing Capabilities
When performing functional testing on an assembled unit, production lines evaluate one uuT  
at a time. However, board-level testing should be optimized to execute as quickly as possible.  
To meet the needs of all testers, parallel test is needed.

unit/device Tracking and 
Serial Number Scanning

uuT information is tracked by operator input for each product and board in the company.

Test deployment Tool
The company has a dedicated team of test engineers that writes test code. This team must be 
able to deploy from the development environment in their lab to the wanted production setting. 
Currently, this is accomplished manually.

maintenance
The test manager requires a formal maintenance plan as part of the standardization effort. Part of 
this plan needs to accommodate an OS migration that the company is facing later this year when 
their current selection goes end-of-life.
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Karen’s company is ultimately successful with their decision. Overall, the test executive provides 
a flexible framework that scales across the different production lines. Standardization across 
a purchased test executive comes with additional benefits that the company can use. The 
vendor provides training to facilitate the test engineer’s acclimation to the new software. Part 
of their purchase of the test executive includes a maintenance contract, wherein the vendor 
agrees to provide routine patches and upgrades. The company also has access to technical 
support resources that can assist in troubleshooting their test sequences. 

The commercial solution remains the standard at Karen’s company. When test engineers need 
to be replaced, because of promotions, retirement, or natural attrition, the test manager can 
hire an individual with experience in the test executive. The company successfully migrates 
from an obsolete OS up two complete versions while maintaining their selection in test 
executive. as new products are developed, the extensible architecture can continuously 
meet production needs.

Conclusion
Regardless of company size, industry, or individual test criteria, it is necessary to implement a 
test executive for top-level system management. This implies introducing a degree of abstraction 
that separates common functions of a system from the specific functionality of test code. a 
complete evaluation of test executive needs is necessary before architecting the ultimate solution. 
many test engineers grapple with the decision to build or buy their test executive. Selection 
of one path over another involves careful consideration of each solution’s benefits from a cost, 
functionality, and maintenance perspective. 

Next Steps
TestStand is industry-standard test management software that helps test and validation 
engineers build and deploy automated test systems faster. TestStand includes a ready-to-run 
test sequence engine that supports multiple test code languages, flexible results reporting, 
and parallel/multithreaded test.

although TestStand includes many features out of the box, it is designed to be highly extensible. 
as a result, tens of thousands of users worldwide have chosen TestStand to build and deploy 
custom automated test systems. NI offers training and certification programs that nurture and 
validate the skills of over 1,000 TestStand users annually.

Learn more about TestStand

©2016 National Instruments. all rights reserved. labVIEW, National Instruments, NI, NI TestStand, and ni.com are trademarks of National Instruments. Other product and company names listed are trademarks or 
trade names of their respective companies.
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Introduction
The design and development of automated test equipment (ATE) presents a host of challenges, 
from initial planning through hardware and software development to final integration. At each 
stage of the process, changes become more difficult and costly to implement. Furthermore, 
because software typically follows hardware in the development cycle, many open-ended items 
are left for the software engineer to handle. good planning goes a long way toward mitigating 
familiar risk, but it can’t prevent every problem, especially in a fast-paced test development cycle 
where many issues arise at final integration.  The idea that the software is more malleable than 
hardware, results in the phrase “just fix it in software!” However, hardware and software are 
tightly coupled and most issues typically require updates to both. This doesn’t stop with the 
initial deployment, but continues for the system’s life cycle.

As products get more complex, so do the systems required to test them. ATE instrumentation 
costs become important, so the ability to reuse instrumentation across several products is 
often a necessity. Furthermore, shortened development times require hardware and software 
to be developed in parallel, usually with poorly defined requirements. Then, once deployed, long 
product life cycles mean that failing or obsolete instruments, as well as product and test 
requirement changes, could produce more challenges for test equipment. Because of this, 
modularity, flexibility, and scalability are critical to a successful automated functional test system.  

From a hardware standpoint, this is typically accomplished by using modular instrumentation 
and interconnects with interchangeable test fixtures. But how can you make the test software 
as adaptable as the hardware? Hardware abstraction layers (HAls) and measurement abstraction 
layers (mAls) are some of the most effective design patterns for this task. Rather than employing 
device-specific code modules in a test sequence, abstraction layers give you the ability to 
decouple measurement types and instrument-specific drivers from the test sequence. Because 
test procedures are typically defined using types of instruments (such as power supplies, digital 
multimeters [dmms], analog outputs, and relays) rather than specific instruments, employing 
abstraction layers results in a test sequence that is faster to develop, easier to maintain, and more 
adaptable to new instruments and requirements. By using hardware abstraction to decouple 
the hardware and software, you can drastically reduce development time by giving hardware 
and software engineers the ability to work in parallel. The development of common APIs for 
sequence and low-level code implementation allows a system architect to maintain a repository 
of common functions, promoting standardization and reusability. This makes it possible for test 
developers to focus on the individual unit under test (uuT) sequence development and spend 
less time writing low-level code.  
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It’s important to understand the difference between a HAl and mAl. A HAl is a code interface 
that gives application software the ability to interact with instruments at a general level, rather 
than a device-specific level. Typically a HAl defines instrument classes, or types and standard 
parameters and functions that those instruments must conform to. In other words, the HAl 
provides a generic interface to communicate with instruments from the instrument’s point of 
view. A mAl is a software interface that provides high-level actions that can be performed on a set 
of abstracted hardware. These actions are a way of exercising multiple instruments to perform 
a task from the uuT’s point of view. Together these make up a hardware abstraction framework. 

ATE SOFTwARE CHAllENgES

Rushed development cycle

Poorly defined requirements

Evolving test procedure

Software development begins before hardware design is 
complete

Separation between software and hardware engineers

dEvElOPmENT

long product life cycle

�� Failing or obsolete instruments

�� Instrumentation changes

Product updates

�� Test procedure changes

�� New hardware required

manufacturing engineer is often not the original  
test developer

mAINTENANCE

BENEFITS OF SOFTwARE ABSTRACTION

decouples hardware and software

disconnects sequence development from code (driver) 
development

Provides common API for instrumentation

Optimizes code reuse

Reduces developement time

Separates roles of architect versus test developer

dEvElOPmENT

mitigates risk of obsolescence or hardware changes

�� Reduces reliance on specific instruments

�� Allows hardware changes without modifying test sequence

Reduces code complexity for future test support/changes

Increases compatibility of code across platforms

mAINTENANCE

TEST ExECuTIvE

mEASuRE 5 v RAIl ON uuT

mAl

1. SwITCH: ENERgIzE mux CHANNEl 7

2. dmm: mEASuRE vOlTAgE AT 100 v RANgE

3. SwITCH: dE-ENERgIzE mux CHANNEl 7

HAl

INSTRumENTATION

Figure 1. High-level Overview of an Abstraction Framework
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Printer dialogs are an excellent everyday use of a HAl/mAl. when you print from your computer, 
you don’t have to open a terminal and send the raw serial, uSB, or TCP commands to your 
printer to initialize, configure, and send the data to print. A hardware driver implements methods 
to perform configuration and printing. Each printer manufacturer follows certain standards for 
implementing these methods into their drivers, so that their printers are easy to use. This common 
interface for executing tasks on a piece of hardware is the HAl. So do you write code to call 
the abstracted methods of the HAl to configure and print a document? No, when you select 
print, a print dialog is displayed. This dialog provides a common interface to adjust the configuration 
parameters, and send the printable data to the device. This is the mAl, as it gives you the 
ability to exercise all printers intuitively without having to understand the low-level functions 
of printer devices. Just like with printing documents, an ATE HAl defines a common set of 
low-level tasks that each instrument type must follow, and the mAl provides a common means 
of performing high-level actions that exercise the instruments.

Figure 2. Printer dialogs are an excellent everyday use of a HAl/mAl.
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Existing HAL/MAL
The test and measurement world has addressed HAls and mAls in many ways. much of this 
can be used right out of the box, or integrated into a larger custom HAl/mAl approach to extend 
functionality with minimal effort. Here are a few of the most common examples.

ABSTRACTION dESCRIPTION TyPE PROS CONS

vendor-Specific  
driver Family 

drivers 
(NI-dAQmx, 
modular 
Instruments, 
Pickering PIlPxI)

HAl

vendor-specific family drivers 
provide generic interfaces for 
some groups of a vendor’s 
common instruments. These 
driver sets can interface with 
dozens to hundreds of 
instruments for each particular 
family. Examples include NI 
drivers (such as NI-dAQmx, 
NI-dCPower, NI-dmm, 
NI-Scope, NI-SwITCH, and 
NI-FgEN), and Pickering PIlPxI.

�� Common intuitive 
interface for supported 
instruments

�� well documented and 
tested

�� All available functions 
provided

�� low learning curve— 
the same driver can 
control all instruments 
in the family

�� valid only for  
each vendor’s  
specific drivers

�� Not all instruments 
support all functions

Industry-
Standard 
Interfaces

HAl

IvI is a standard for instrument 
driver software that promotes 
instrument interchangeability 
and provides flexibility when 
interfacing with IvI-compliant 
instruments. The standard 
defines specifications for 13 
instrument classes, which many 
manufacturers follow, allowing a 
single driver to control multiple 
types of instruments. 
Instrument classes include 
dmm, oscilloscope, arbitrary 
waveform/function generator, 
dC power supply, switch, 
power meter, spectrum 
analyzer, RF signal generator, 
counter, digitizer, 
downconverter, upconverter, 
and AC power supply.

�� Available for a wide 
variety of instruments 
from uSB to PxI

�� Compatible with many 
boxed gPIB, serial, 
and lxI instruments

�� Plug and play

�� Standard programming 
model for all drivers

�� High-level instrument 
API

�� Allows simulated 
devices

�� Only API is 
specified, not the 
implementation— 
Two “interchangeable” 
implementations 
may return different 
results for the same 
measurement

�� Cannot be used 
with noncompliant 
instruments

�� may not implement  
all functions required

�� may expose 
functions that are 
not supported by an 
instrument

Switch Executive mAl

Switch Executive is a switch 
management and routing 
application that allows compliant 
switch matrix and multiplexer 
instruments to be combined into 
a single virtual switch device. 
This virtual switch can be 
intuitively configured and 
actuated using named signal 
channels and routes.

�� Intuitive switch route 
setup and operation

�� define channels and 
routes based on uuT- 
or test-centric names

�� define no-connect 
routes for added safety

�� Requires switches 
to be NI- or IvI-
compliant

�� doesn’t work with 
relays controlled with 
NI-dAQmx

Table 1. Out-of-the-Box Software Abstraction layers
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Out-of-the-box abstractions provide a lot of functionality with minimal customization. However, 
they don’t provide unification. IvI drivers and NI family drivers are great HAls for compliant 
instruments, but they still require test sequences to be developed from an instrument-centric 
point of view. Switch Executive does an excellent job of abstracting switch routes to a test- 
centric point of view, but it can be used for only NI- or IvI-compliant switch connections (no 
analog or digital I/O, dmm, Scope, power supply, and so on). By using a unified HAl/mAl, you 
can more effectively develop uuT-centric sequences that can interface with a wide variety of 
instrumentation and better handle changes to instrument channels and connections.

Although beneficial, HAls and mAls require a lot of foresight that typically comes from past 
experience. There are many different levels of abstraction to consider. Some are software and 
time intensive, and others are given out of the box. In general, the more abstracted from 
specific instrumentation and measurements you get, the more high-level framework planning 
and software development is required. Architecting a large abstraction framework is time- 
consuming, and can be risky without proper planning. Improper initial assumptions or 
implementation can have both positive and negative lasting consequences. It is important to 
find the right scope of hardware substitution for your particular needs.  If you are unsure of how 
to proceed, start simple, keep it scalable, and use built-in abstraction when possible.

Background
To best understand how a HAl/mAl is implemented, you must understand the anatomy  
of automated test software. At the highest level, automated test software employs a test 
executive (or sequencer), such as TestStand. The executive calls a series of test steps, which 
most often are code modules or functions, developed in languages like g in labvIEw software, 
C, .NET, or Activex. with a custom instrument-specific approach, these code modules have 
specific purposes, such as a switched dmm that uses the dmm and switch, or a power supply 
with ripple measurement that uses both the power supply and the scope. Although this can 
be beneficial, because it gives each developer the ability to code the specific functions needed, 
it requires a large amount of cross-functionality and can be difficult to develop, deploy, and 
manage. Furthermore, it requires every test developer to be well versed in the low-level 
software (such as labvIEw).

COdE mOdulES

TEST SEQuENCER (ExAmPlE TestStand)

Switched dmm dmm w/ Trigger Switched Scope PS + Ripple measurement

INSTRumENTS

dmm Switch dAQ PS Scope

Figure 3. The Anatomy of Nonabstracted Automated Test Software
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Without Abstraction
without hardware or measurement abstraction, you must employ code modules that directly 
reference drivers to interface with instruments. This results in a test sequence that is closely 
coupled to specific instruments and specific driver code. Four inevitable problems occur without 
a HAl/mAl framework:

■■ Instruments need to change because of obsolescence or requirement changes— 
without abstraction, you need to change the driver for each call to that instrument, which 
could be dozens of steps in a typical test sequence. Each instrument change causes a chain 
reaction of software changes.

■■ Driver functionality changes because of new requirements—If a driver needs to be 
updated, you may need to update every instance of that driver to match the new code, 
especially if the inputs or outputs change. Furthermore, directly calling driver code modules 
requires that every test developer understand the inner workings of each driver they use, 
especially in the case of multifunction action engines. By exposing all of this functionality, 
test engineers must also be well-versed software engineers.

■■ Test sequences are developed from the point of view of the instrumentation— 
By using instrument-specific drivers, all test sequences are developed using instrument-
centric channel names (for example, you develop test sequences using instrument-centric 
names) rather than uuT- or test-centric names (for example, 5v_Rail, lEd_Control, vdd). 
Because you developed test procedures from the uuT’s point of view, this makes development 
and debugging difficult. Furthermore, any test changes require intimate knowledge of the 
instrumentation, wiring, and interconnects. 

■■ Test sequence development occurs at the same time as hardware development— 
To achieve tight deadlines, software and hardware development often happen concurrently. 
Therefore, the instrumentation and channel details are not always known when developing 
test sequences. without abstraction, you’ll need to leave placeholders for drivers, channel 
numbers, and connections. Any hardware signals that change require updates to the  
test sequence.

For example, with the custom approach, a multiplexed dmm measurement code module may 
look something like the image below, a common switched dmm labvIEw vI. The code 
module has a specific set of calls to specific instrument types. In this example, these are the 
NI mux and NI dmm. This code module connects a switch based on an input channel and 
switch topology, measures using the dmm based on some input parameters, and then 
disconnects the switch. In the test executive, you must know what fields to fill out, and 
exactly what channels, topologies, and configurations are needed from the instrumentation’s 
point of view. you must also make sure to pass the switch and dmm measurements to the 
code module appropriately.  

Figure 4. Front Panel of a Typical multiplexed dmm measurement Application in labvIEw

NI Switch DMM Mux Example - Custom.vi

SWITCH

X

Switch Reference

Switch PXI_2527

topology name

2527-Wire 32x1 Mux

MUX Channel

CH7

DMM Measurement

DMM resources

PXI_4065 DMM

measurement type

DC Volts

range

10.00

Resolution

6 1/2

0.00000
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From the perspective of the test executive, the code module is called to perform a specific 
function (multiplexed dmm). This function implements specific calls to the instruments for 
which it was developed. The block diagram below shows the nesting of command calls. In the 
diagram, the test executive contains a step that calls the code module. The code module employs 
drivers to talk to specific instruments. Each outer item is dependent on its internal calls. 

If an instrument must change, every function in the line of dependencies must change.  
For instance, if the initial multiplexer lacks enough channels, and needs to be switched for  
a higher channel count matrix, a series of changes must take place because of the chain  
of dependencies:

1. Instrument—PxI-2527 mux is changed to a PxI-2532B matrix

2. Driver—NI mux driver changes to NI matrix (rows/columns instead of channels)

3. Code Module—NI mux dmm vI must be changed to an NI matrix dmm vI

4. Function Call—The test executive call to the code module must be updated

5. Sequence—Test sequence must be updated for every call to that code module

Figure 5. Nested Command Calls to Perform a multiplexed dmm measurement

Test Sequencer

Step: measure 5v Rail

NI mux dmm vI

NI dmm driver
measure dC volts

NI PxI-4065 dmm

NI mux driver
disconnect CH7

NI PxI-2527 mux

NI mux driver
Connect CH7

NI PxI-2527 mux
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STEP 1: INSTRumENT CHANgE

Test Sequence

Step: measure 5 v Rail

NI mux dmm vI

NI dmm driver
measure dC volts

PxI-4065 dmm

NI mux driver
disconnect CH7

PxI-2538B mTx

NI mux driver
disconnect CH7

PxI-2532B mTx

Test Sequence

Step: measure 5 v Rail

NI mux dmm vI

NI dmm driver
measure dC volts

PxI-4065 dmm

NI matrix driver
disconnect (r0/c0, r1/c7)

PxI-2538B mTx

NI matrix driver
Connect (r0/c0, r1/c7)

PxI-2538B mTx

STEP 4: FuNCTION CAll CHANgE

Test Sequence

Step: measure 5 v Rail

NI mux dmm vI

NI dmm driver
measure dC volts

PxI-4065 dmm

NI matrix driver
disconnect (r0/c0, r1/c7)

PxI-2538B mTx

NI matrix driver
Connect (r0/c0, r1/c7)

PxI-2538B mTx

STEP 5: TEST SEQuENCE CHANgE

Test Sequence

Step: measure 5 v Rail

NI mux dmm vI

NI dmm driver
measure dC volts

PxI-4065 dmm

NI mux driver
disconnect (r0/c0, r1/c7)

PxI-2538B mTx

NI matrix driver
Connect (r0/c0, r1/c7)

PxI-2538B mTx

STEP 2: dRIvER CHANgE

Test Sequence

Step: measure 5 v Rail

NI matrix dmm vI
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Figure 6. Nonabstracted Changes Required by Chain of dependencies
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With Abstraction 
Hardware and measurement abstraction breaks the coupling between the test executive and 
the code modules that interact with the instruments. Instead of calling code modules that 
directly interact with specific instruments, the test executive interacts with the mAl. This 
defines actions or step types that perform common tasks based on generic instrument types. 
These actions are instrument-generic and typically have high-level names like “Signal Input,” 
“Signal Output,” “Connection,” “Power,” and “load.”  They also take in test-specific parameters 
(rather than instrument-specific parameters) like signal name, connection name, power supply 
alias, voltage/current, and load method (Cv, CC, CP). A mapping framework uses a configuration 
file to translate test-specific parameters of the generic actions into instrument-specific 
parameters like instrument references, channel numbers, matrix rows and columns, gPIB 
addresses, and instrument configuration constraints. The framework interfaces with the HAl 
to communicate with the specific instruments that the configuration file defines. It calls the 
appropriate methods of each specific instrument based off of the mAl action type with 
instrument-specific parameters pulled from the configuration file.

If you think of a single step as a cooking recipe (pancakes), the details in the configuration file 
would be the ingredients (eggs, milk, butter, flour), the actions would be the cooking functions 
(combine, mix, beat), the drivers would be the kitchen tools (bowl, mixer, griddle), and the 
framework would be the instructions that put it all together. 

HAl— HARdwARE dRIvERS

TEST SEQuENCER (ExAmPlE TestStand)

NI-dmm driver NI-Scope driver NI-dAQmx driver NI-Switch driver

INSTRumENTS

mAl— ACTIONS/STEP TyPES

Signal Input Signal Output Switching Power

PS driver

mapping Framework

Figure 7. Anatomy of Abstracted Automated Test Software

Configuration File

dmm Scope dAQ Switch Power Supply
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This section continues to the multiplexed dmm example using abstraction. In this example, 
the test executive calls a generic step type, Signal Input, using a step-specific input parameter 
5 v Rail. In this particular framework, Signal Input is defined as three device actions: connect 
signal route, read measurement device, disconnect signal route. This is passed to the mapping 
framework using the 5 v Rail parameter. The mapping framework reads the configuration file 
to find the instrument and channel details of 5v  Rail. These correspond to a connection of the 
PxI-2527 mux channel 7, and a measurement of the PxI-4065 dmm in dC volts mode. The 
framework then calls the appropriate abstracted drivers, NI-Switch and NI-dmm, to communicate 
with the specific instruments that the configuration file defines.

 

Executing the same change as discussed in the nonabstracted example, where the PxI-2527 
mux is replaced with a PxI-2532B matrix proves to be much easier when using a HAl/mAl 
framework. Because all of the instrument-specific details are stored in the configuration file 
and the HAl provides a common interface for interacting with similar instruments, only the 
configuration file needs to change. By replacing PxI-2527 mux: Ch7 with PxI-2532B mtx: r0/c0, 
r1,c7, the mapping framework automatically pulls the updated details and calls the new matrix 
with the new parameters. No test sequence or code module changes are required.

Figure 8. Function Calls for a dmm measurement with an Abstraction Framework

mAl HAl

Test Sequence

Step: measure 5 v Rail

Channel Configuration File

5 v Rail

Connections

PxI-2527

mux: ch7

measurement

PxI-4065

dmm: dC volts

Signal Input

Connect (5 v Rail)

measure (5 v Rail)

disconnect (5 v Rail)

NI-Switch driver

NI-dmm driver

PxI-2527 mux

PxI-4065 dmmvalue

Signal Input 
(5 v Rail)

mapping Framework

Connect PxI-2527

mux: ch7

measure PxI-4065

dmm: dC volts

disconnect PxI-2527

mux: ch7
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Approaches
The most important topic to consider when deciding on an abstraction framework is the scope 
of abstraction on which all other decisions are based. On one extreme, there is the case for no 
abstraction, where each hardware interface is a direct call to an instrument-specific driver. On 
the other extreme, you have complete abstraction, where every possible interface between 
components, communications protocols, measurements, and configuration formats has an 
abstract definition. This section explores some of the options that cover the range of possibilities.  

Option 1: Instrument-Specific Driver
The instrument-specific driver approach is probably the most commonly implemented in 
automated test, mainly because it requires the least amount of coding, foresight, and planning. 
with this approach, low-level code modules are developed to interface with specific instruments. 
These are typically referred to as low-level drivers, or instrument drivers, which are then called 
by higher level code modules or directly by the test executive. The block diagram below shows 
each of the instrument drivers developed for a specific instrument. In this scenario, if the 
instrument changes, the driver and higher level calls must also change.

Figure 9. Abstraction makes it easy to update hardware with minimal software updates—just updates to the configuration file.
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mapping Framework

Connect PxI-2527
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Although this method does not include any abstraction, there are still best practices you should 
follow to promote robust driver development and interactions:

■■ develop or use instrument driver packages for interfacing with each instrument.  
■■ A low-level driver package implements all of the functions for initializing, interacting  

with, and closing a connection to an instrument.  
■■ Functions should be simple and single-purposed.
■■ drivers should be able to handle multiple instances of the same instrument type  

(such as two identical power supplies in the same system).
■■ develop wrapper instrument drivers to simplify the instrument interface.

■■ Pre-existing drivers contain dozens of functions that may be difficult to understand. you 
can wrap pre-existing full-featured instrument drivers into simpler wrapper instrument 
drivers to promote easy usability.

■■ Ensure all instrument interfacing goes through instrument drivers.
■■ This provides a single point of entry for all instrument communications, which eases 

debugging, reduces race conditions, and allows the instrument state to be managed in  
a single location.

■■ A wrapper instrument driver, if developed, should be the single entry point.
■■ drivers may be called directly by the test executive, or by higher level code modules.

■■ do not implement test-specific functionality at the driver level.
■■ Test-specific algorithms should be implemented by higher level code modules or in the 

test executive.

INSTRumENT
dRIvERS

TEST ExECuTIvE

INSTRumENTS

HIgH-lEvEl
COdE mOdulES

NI-dmm driver NI-matrix driver NI-dAQmx driver PS driver xg850 driver

NI-dmm NI-matrix NI-dAQ NI PS 1 NI PS 2 xg850 PS

NI matrix/dmm NI matrix/AO NI AI NI dIO

Figure 10. Overview of an Instrument-Specific driver method for Automated Test Software without Abstraction
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■■ Ensure instrument drivers are unaware of one another.
■■ High-level code modules or the test executive calling individual instrument drivers 

should perform multi-instrument interactions.

Option 2: Out-of-the-Box HAL/MAL 
The fastest way to incorporate abstraction into the instrumentation driver architecture is to use 
pre-existing HAls and mAls. Although the options for purchasing a fully integrated HAl/mAl 
abstraction framework are limited, many hardware vendors have already implemented some 
level of hardware abstraction into their instruments; Switch Executive is a mAl geared specifically 
toward switch connections and routing. By architecting your code modules around these 
pre-existing abstractions, you can increase ATE software adaptability and abstraction with 
minimal development effort.

Out-of-the-Box Hardware Abstraction
Pre-existing hardware abstraction uses common low-level interfaces that work with a variety 
of instruments. This reduces the number of required instrument-specific drivers and reduces 
the impact of instrument changes in a system. The test executive and higher level code modules 
can reference general drivers, which reduces development effort and the impact of instrument 
changes. when one of the abstraction types, defined below, is implemented, the I/O for a 
particular interface is fixed. Therefore, instrument changes do not typically cause code 
module changes.

you can use pre-existing hardware abstraction in two ways: instrument family drivers and 
communications standards. Instrument family drivers tend to be vendor-specific drivers 
that can control many variations of a particular instrument type within that vendor’s catalog. 
Communications standards provide an industry agreed-on method for interfacing with certain 
types of instruments across multiple vendors. you may use these standards to develop 
instrument drivers that can control a variety of similar instruments.  

Hardware Abstraction Through Instrument Family Drivers
Instrument family drivers are vendor-specific drivers that communicate with a common product 
line of instruments. Similar to IvI drivers, instrument family drivers provide communications 
to multiple different instruments using a common driver. Common examples include NI modular 
instruments (NI-dmm, NI-Switch, NI-dCPower, and NI-Scope) and Pickering PIlPxI. Instrument 
family drivers promote interchangeability within the family for which they are developed. 
Although they do not support cross-vendor or cross-family reuse, these drivers are typically 
intuitive, easy to implement, and contain most, if not all, of the functions for each instrument.

Hardware Abstraction Through Communications Standards
many instrument manufacturers follow industry standards for device communications. By 
following industry standards, manufacturers can make their instrumentation interoperable 
with other similar instruments. Two of the most common standards are the Standard Commands 
for Programmable Instruments (SCPI, often pronounced “skippy”) and Interchangeable virtual 
Instruments (IvI).

http://ni.com/automatedtest


ni.com/automatedtest

Hardware and measurement Abstraction layers15

SCPI
SCPI defines a standard for syntax and commands to use in controlling programmable 
instruments in the test and measurement industry. with these commands, users can set and 
query common parameters of instruments. SCPI commands can be implemented over a 
variety of communications protocols, including gPIB, lAN, and serial. By developing a single 
SCPI-compliant driver, you can communicate with multiple instruments of the same type  
(dC power supply, electronic load, and so on) without having to develop instrument-specific 
drivers. when developing a SCPI driver, note that, although SCPI defines a common command 
and syntax standard, different vendors sometimes implement the standard with minor differences, 
making a 100 percent standard driver somewhat difficult. when selecting SCPI-compliant 
instruments and developing drivers, it is important to pay close attention to the command 
specifics of each instrument.   

IVI
IvI is a standard for instrument driver software that promotes instrument interchangeability 
and provides flexibility when interfacing with IvI-compliant instruments. The standard defines 
an I/O abstraction layer using vISA. Because of the incorporation of SCPI into IvI, many 
instruments that are SCPI-compliant are by definition IvI-compliant. The IvI standard defines 
specifications for 13 instrument classes that many manufacturers follow, which gives a single 
driver of each type the ability to control multiple unique instruments from different vendors. 
Instrument classes include dmm, oscilloscope, arbitrary waveform/function generator, dC 
power supply, switch, power meter, spectrum analyzer, RF signal generator, counter, digitizer, 
downconverter, upconverter, and AC power supply. many PxI and boxed instruments follow 
the IvI standard, and pre-existing drivers are available in many programming languages and 
test executives.

By developing test sequences and code modules using IvI drivers for IvI-compliant instruments, 
one vendor’s instrument looks the same as another’s. you may use a single driver set for each 
type to interface with many interchangeable instruments. If an IvI-compliant instrument is 
replaced with one of similar functionality, code and sequence updates are reduced as compared 
to using instrument-specific drivers. However, although IvI drivers can implement most functions 
of compliant instruments, some instruments may still require specific code for executing custom 
functions. Conversely, some instruments may not be capable of handling all IvI-compliant 
functions. Finally, although two instruments may execute identical IvI functions, they may not 
always achieve identical results. Always verify and test the functionality of instrumentation 
whenever changes are made.
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INSTRumENT
dRIvERS

TEST ExECuTIvE

INSTRumENTS

HIgH-lEvEl
COdE mOdulES

IvI dmm driver NI-Switch driver NI-dAQmx driver IvI dC PS driver

NI-dmm NI-matrix NI-dAQ NI PS 1 NI PS 2 xg850 PS

Switched dmm Switched AO NI AI NI dIO

Figure 11. Overview of Automated Test Software with Out-of-the-Box Abstraction

Out-of-the-Box Measurement Abstraction
Although pre-existing hardware abstraction is relatively common, it allows abstraction from only 
an instrument point of view. Conversely, measurement abstraction is very limited. Because 
of the high level of customization across test systems, it is difficult to define a standard for 
measurement actions. The most well-known out-of-the-box measurement abstraction layer is 
Switch Executive, a switch management and routing application that allows compliant switch 
matrix and multiplexer instruments to be combined into a single virtual switch device. This virtual 
switch can be intuitively configured and actuated with user-named channels and routes. Although 
valid for only devices compliant with NI-Switch and IvI switch, Switch Executive provides an 
excellent method of defining switch routes from the point of view of the uuT or test.  

First, Switch Executive provides a graphical Configuration utility for setting up switch  
channel names and routes within single instruments and across multiple instruments. Rows, 
columns, channels, and route groups can all be configured and named to intuitively set up a 
switching scheme.

Keysight dmm NI mmx AmREl PS
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Figure 12. Switch Executive mAl Configuration Interface

Next, Switch Executive integrates into labvIEw and TestStand to provide powerful interfaces 
for setting and querying the preconfigured routes by name. when used with the TestStand 
test executive, Switch Executive can be used on a step-by-step basis to provide a named 
interface to the switch instruments before executing the step’s code module.

Switch Executive is a useful mAl that abstracts switch connections to test-specific names 
rather than instrument-specific names. when used in conjunction with IvI-switch hardware 
abstraction, it proves to be an excellent example of an integrated HAl/mAl framework. 
However, it falls short when non-IvI switches or external digital-output-controlled relays are 
used. Furthermore, Switch Executive pertains only to switch routing, and does not extend to 
other measurement types. To achieve an integrated HAl/mAl framework beyond switching, 
custom code development is required.

Figure 13. Switch Executive mAl Test Setup
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HARdwARE dRIvERS

TEST SEQuENCER (ExAmPlE TestStand)

INSTRumENTS

Figure 14. Overview of Automated Test Software with an Integrated mAl and HAl
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measurement API (Back)

Hardware driver API

Instrument API

dmm Scope dAQ Switch PS

NI-dmm driver NI-Scope driver NI-dAQmx driver NI-Switch driver PS driver

Configuration
API

Option 3: Integrated HAL/MAL Framework
An integrated HAl/mAl framework provides a structure for implementing high-level actions 
called by the test executive (mAl), interfacing with low-level drivers to communicate with 
instruments (HAl), and mapping the details between the two. This framework is implemented 
by three major types of code modules: actions, mapping framework, and hardware drivers. 
Each of these code module types are defined by a set of APIs. An API is a set of tools (functions, 
protocols, parameters, syntax) for software applications, which define how a code module 
should function and interact with the software around it. In a basic HAl/mAl framework there 
are four common APIs: measurement API, Configuration API, Hardware driver API, and 
Instrument API. The code modules, APIs, and their interactions are shown and described below.
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The three types of code modules are:

■■ Actions/Step Types—The actions define the capabilities of the mAl. A specific action 
defines each measurement type (input or output). Actions can be as simple as a single 
function call to a single instrument type, such as making a switch connection. They can also 
be as complex as multiple function calls to multiple instruments, such as combining a switch 
connection with setting a power supply voltage, current, and enabled state. These code 
modules implement the measurement API for defining their methods and parameters.

■■ Mapping Framework—The mapping framework is the internal code that links the high-level 
actions to the low-level instrument devices using defaults from the configuration file. The 
mapping framework code module interacts with the hardware drivers through the Hardware 
driver API, and with the actions through the measurement API.

■■ Hardware Drivers—The hardware driver code modules translate the generic device type 
function calls (dmm, power supply, switch, and so on) to instrument-specific communications 
(SCPI, IvI, NI-dCPower, and proprietary communications). Therefore the hardware drivers 
implement the Hardware driver API on one end, and instrument-specific API on the other.

A HAl/mAl abstraction framework contains a minimum of the following four APIs:

■■ Measurement API—The measurement API defines the high-level actions and their specific 
parameters. This is the mAl definition. The measurement API defines a common framework 
that all actions must follow, and then allows each action to define its own API (parameters 
and methods) required to carry out its particular function. Each action must at a minimum 
implement the back-end measurement API, which the mapping framework uses to link the 
human readable alias to specific switching and measurement instruments and the appropriate 
channels. Optionally, a front end to the API may be developed that provides a more intuitive 
interface to each action. This front end is typically a configuration dialog/wizard. An example 
measurement API for a signal input would define a signal input alias and an output of the 
return value. The API would also define that, for the alias, a connection, measurement, 
and then disconnection is made.

■■ Configuration API—The mapping framework uses the Configuration API to fill in the details 
on how to translate from the measurement API to the Hardware API. The Configuration API 
defines the parameters, syntax, and content of the configuration file or database. Only the 
mapping framework uses this API. For example, the Configuration API may dictate that the 
configuration file is a microsoft Excel file and that each signal alias should have the following 
properties: name, type, connection details, instrument, instrument configuration, and scaling.

■■ Hardware API—The Hardware API is the abstracted API that defines what common 
parameters and methods a particular type of instrument must implement. This API defines 
the HAl. For example, the dmm Hardware API might dictate that all dmms must be able 
to initialize, configure (voltage; current; resistance, range, resolution), measure (return 
value), and close.  

■■ Instrument API—The Instrument API is defined by each individual instrument, and is therefore 
not an abstracted layer. Each instrument-specific hardware driver implements the necessary 
functions and commands for controlling its particular instrument. This is the same API that 
would be used in an instrument-specific code interface, and would implement the specific 
communications protocols and commands for that particular instrument.

 To better understand the interactions between the code modules and APIs, revisit the multiplexed 
dmm example with a detailed explanation of the inputs and output of each code module.
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In the example, the signal input block is the action code module, which defines that a signal 
input should execute a Switch device Connect function, a measurement device measure 
function, and then a Switch device disconnect function. The measurement API for this function 
defines that the code module requires an alias that it receives from the test executive, then 
passes to the mapping framework, and then gets a return value from the mapping framework 
to pass back to the test executive.

Figure 16. Example of mAl Action APIs for a Signal Input
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Figure 15. multiplexed dmm measurement with an Abstraction Framework
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The mapping framework receives the commands from the action through the measurement API. 
It then parses the alias data from the configuration file through the Configuration API to obtain 
the correct instrument Ids and parameters. The Configuration API defines the file format, syntax, 
and fields for the system configuration. The mapping framework then passes the instrument-
specific information to the appropriate drivers through the Hardware driver API.

The mapping framework calls the individual hardware drivers using the generic Hardware 
driver API.  Each driver then interprets the details of the generic setup and communicates 
with the specific instruments using their own out-of-the-box methods and parameters.  

disconnect (device, Channel)

measure (device, Channel, mode)

Connect (device, Channel)

measure (Alias)

Connect Switch (Alias)

Measurement API 
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Hardware Driver 
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Mapping

mapping Framework
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Conn_device
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disconnect Switch (Alias)

Figure 17. Example of mapping Framework APIs for a Signal Input
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Figure 18. Example of Hardware driver APIs for a Signal Input
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Option 4: HAL/MAL Plugin Architecture
Plugins are potentially valuable additions to an integrated framework. A true plugin is simply  
a software component that can be modified after deployment without redeploying an entire 
application. Plugins are stored on disk separately from the main application and/or framework 
and are loaded dynamically at run time.

Although developing a plugin architecture introduces several challenges, it also simplifies 
software regression testing by clearly limiting the scope and risk of added or modified 
functionality. A framework developed without plugins must be rebuilt each time a new 
measurement type, instrument driver, or configuration format is needed. Because, without 
plugins, the entire source is built into a single ExE, there can be no guarantee that a seemingly 
trivial change to one instrument library did not inadvertently affect other application features. 
Testing must be thorough because it is difficult to know all possible effects of source modifications.

A plugin architecture provides the highest level of software modularity by giving a developer the 
ability to add or fix plugin code without modifying, or redeploying the underlying framework. 
This is achieved by writing a framework that depends only on abstract classes or modules 
and that loads the required concrete plugins dynamically, usually only as needed. Successful 
plugin architectures depend on thoughtful interface design. In other words, to make use of 
plugins in a test framework, the framework must know how to call any possible component 
that plugs in. If all plugins implement a consistent software interface, loading them at run 
time requires only that the framework or test application knows where to find them.

Although these are some of the more common processes, APIs, and code modules of an 
abstraction framework, they are certainly not the only ones. Each framework is unique, and 
has its own requirements, processes, and implementations. For some teams, this level of 
abstraction may be more than is required. However, in other cases, the system architect may 
need to inject additional layers of abstraction. The actual implementations of these APIs are 
also open to interpretation, based on the needs and abilities of the framework architect and 
users. Some engineers implement all abstractions with simple action engines, some use 
more advanced object-oriented programming, some use plugins, and others prefer a single 
code base. The key is to find the right extent of abstraction and implementation to fit your 
particular needs and abilities. It is also important to understand that not everything can be 
solved by abstraction, and sometimes instrument-specific code may still be required.  
Therefore, when developing an abstraction layer, make sure not to prevent custom code from 
being developed for advanced functions. you can do this by allowing instrument references to be 
obtained by higher level code modules or by the test executive. Advanced developers should 
never be hindered by a framework.
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Practical Scenario 1
you, a test engineer from a commercial product company, have been tasked with developing 
functional tests for the electronic subassemblies of a new product. There are three PCBAs 
and a final assembly that your need to test. An existing general-purpose ATE instrumentation 
platform exists but it is outdated, and previous test programs have been recently plagued by 
equipment failures and obsolescence. Fortunately, a new ATE platform has been designed as 
part of this program, and it allows interchangeable test heads to adapt the instrumentation to 
different assemblies.  

your task is to develop the test sequence and code module software to interact with the 
instrumentation and fixtures that hardware engineers are developing. you have some experience 
with a test executive (the same one used by the previous platform), and have been developing 
software applications for a few years. As part of the effort, there have been talks about using 
abstraction to help mitigate the obsolescence issues of the previous system. you must decide 
if this is the right way to go and how far to take it. 

To Abstract or Not to Abstract…
The first decision you must make is whether to develop an abstraction framework, regardless 
of the level of abstraction. given the out-of-the-box options, like IvI, the answer to this decision 
is almost always yes. The only time that abstraction is not worth the effort is if the project 
lifespan is 100 percent known, and changes will never be required, which is almost never.  

ABSTRACTION OPTION OPTION 1 NONE
OPTION 2

OuT OF BOx
OPTION 3

BASIC CuSTOm
OPTION 4

wITH PlugINS

Allows individual instruments 
to be replaced with:

  Instrument with same  
  communications protocol ● ● ● ●

  IvI- or family-compliant  
  instrument ○ ● ● ●

  Instrument with different  
  communications protocol ○ ◒ ● ●

Change instrument channels/
wiring without modifying test 
sequence (modify config file)

○ ◒ ● ●

measurements/tasks from 
point of view of test/uuT ○ ◒ ● ●

Add new instruments or 
measurements without 
modifying framework

○ ○ ○ ●

Table 2. Feature Comparison for Abstraction layer Options

None ○  Some ◒  Full ●
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Will You Need a HAL?
The next decision to be made is what level of hardware abstraction to use. This is where the 
decision gets more complicated, as many factors are at stake. Hardware abstraction is 
typically easier to understand, and therefore less costly to implement than a mAl. This is 
especially true if you can reasonably commit to using pre-abstracted drivers, such as IvI and 
product family drivers. However, as soon as you must use instruments that don’t fall into a 
single driver, you may need to develop a generic interface for each instrument type. For 
instance, if your system has some IvI-compliant power supplies, as well as a noncompliant 
supply, you may want to develop an abstracted power supply definition that works with 
either type. defining an abstract hardware definition typically requires past knowledge of 
how most instruments of that particular type work. you can then use that information to 
define the common methods and parameters for each instrument type within your system.  

Aim for covering about 80 percent of the functions that you reasonably expect each device to 
use. Talk with your team to determine the core functions and parameters of each instrument 
type that have to be implemented by each abstracted instrument driver. For example, the 
team may determine that the core functions of all power supplies should be initialize, set 
voltage/current/enabled state, readback voltage/current/enabled state, and close. Although 
there may be other functions that one power supply could potentially use in the future, it  
may not always be worth it to include as part of your system’s standard. If you don’t know 
enough about a particular instrument type, or are unsure of what functions to require, start 
small. you can always add to the standard in the future, but it is difficult to change the parameters 
or details of a function after it is in use by multiple drivers.

The flowchart below can help you decide what level of hardware abstraction is right for you.  
If you are unsure of an answer, you can either assume toward more of an abstracted solution 
or toward the less abstracted solution. A more abstracted solution requires more upfront 
design, but may save time in the long run, while the less abstracted solution gets you up and 
running faster, but may be problematic in the future. One item to note is that the first question  
is if you require a mAl. This is because a mAl cannot be effectively implemented without a 
well-designed HAl. 
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Start

use instrument 
specific drivers.

use built-in IvI drivers 
of test executive.

Are there any special-purpose 
instruments that do not have a 

replacement or cannot 
reasonably change?

will a mAl be used?

Can you answer yes to 
any of the following:

Are all instruments 
IvI-compliant?

will instrument 
settings change 

from test to test?

does the test 
executive have 

built-in IvI support?

No

No

No

yes

yes

yes

No

�� will the system life cycle exceed one year?

�� will more than one instrument of each particular type 
(measurement, power, switching, and so on) be used?

�� will the instruments need to change because of 
obsolescence or requirements changes?

�� will instruments need to be added to the system?

yes

yes

yes

No

develop instrument-specific drivers 
for all special-purpose instruments.

Figure 19. decision Flowchart to determine what level of Abstraction to Implement

document parameters and 
methods for each instrument class.

develop instrument-, family-, or standard- specific 
drivers that conform to abstract definition.

document abstract hardware driver 
code for each instrument class.

will a mAl 
be used?

No

develop test sequences using mAl.

yes

develop test sequences using abstract drivers.

No

Implement  
configuration file 

format for managing 
instrument settings.
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Will You Need a MAL?
The first decision of a HAl is if a mAl will be required. This is because a mAl is nearly 
impossible without relying on hardware abstraction. Therefore, this question is really asking if 
you need an integrated abstraction framework. A HAl/mAl is ideal when there are multiple 
test developers who may not have low-level software experience. A few major questions can 
help guide the decision to develop a mAl:

■■ will there be a software architect who can plan and support the framework? A HAl/mAl  
is difficult to support organically without an architect/owner.

■■ will there be multiple test developers with minimal software experience? A big benefit  
of an abstraction framework is that it lowers the learning curve for test development.

■■ will the system have a long life cycle that supports many products? This can be a big 
upfront investment, but the payoff is greater the more it is used.

■■ do you feel comfortable developing and supporting a mAl? No abstraction is better than 
poorly defined and poorly implemented abstraction. when simple and elegant, a HAl/mAl 
can save a lot of time in the long run; but, when overly complex or poorly designed, it can 
be cumbersome and actually add development and debug time.

If you answer yes to most of these questions, then developing an integrated abstraction 
framework will probably pay off in the long run.  

Practical Scenario 2
Even if all of the benefits of abstraction are known, there is still the major hurdle of cost versus 
payoff (where units are typically time). Although the first part of the abstraction decision is 
typically from a technical perspective, the cost/benefit decision has to be made at a higher 
business level.  
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How Much Will It Cost?
This is a difficult question to answer as much of it depends on past experience, coding 
abilities, and the level of abstraction required. However, you can estimate a rough order of 
magnitude for various components, as the table below shows.  

This shows that development time for a fully integrated HAl/mAl abstraction layer could be 
as low as 250 hours, and could exceed 750 hours. depending on the level of abstraction, this 
could even exceed 1,000 hours.  

CATEgORy TASK dESCRIPTION
HOuR ESTImATE

(lOw)
HOuR ESTImATE

(HIgH)

Planning

Architecture 
definition

documentation of the types of actions, 
devices, and the general interfaces 
between them

24 48

HAl definition 
per device type

documentation of the inputs and outputs 
and methods of each type of device

8 
(per device)

16 
(per device)

mAl definition 
per action

documentation of the inputs and outputs 
and methods of each type of 
measurement/action

8 
(per action)

16 
(per action)

Configuration 
definition

definition of the format, syntax, and 
content of the configuration file or 
database

24 48

Implementation

mapping 
framework 
development

Implementation of all of the software to 
map the configuration file to actions and 
abstract drivers—the majority of the 
underlying framework is developed here

60 120

Abstract  
device driver 
development

Software development of the abstract 
device interface code, per device type— 
essentially building the instrument

4 
(per device)

24 
(per device)

Instrument driver 
development

Software development of each instrument- 
specific driver that uses the HAl—fills in 
the template for each specific driver

4 
(per instrument)

24 
(per instrument)

Action 
development

Software development for each action 
defined by the mAl—implements the front- 
and back-end APIs for interfacing with the 
test executive and the mapping framework

4 
(per action)

24 
(per action)

Total

Total time to develop framework (not 
including individual instrument drivers)—
assumes five device types with one 
instrument-specific driver per device,  
and five actions

248 776

Table 3. Abstraction Framework Tasks and Costs
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What Can You Do to Reduce Cost?
when it comes to software development, cost is closely related to complexity. Complexity can 
be both good and bad, depending on its nature. The goal is to increase good complexity while 
avoiding bad complexity. Complexity can be good when it increases functionality. Each feature 
typically increases functionality. Code that is scalable, flexible, and modular tends to be more 
complex to achieve these goals. But this complexity is beneficial when implemented in an 
elegant way. Complexity that arises out of poor planning, redundant functionality, and unclean 
spaghetti code is bad because it increases development cost without increasing features.   

you can reduce complexity in an ATE abstraction framework in four ways:

■■ Plan your architecture up front. As with most development processes, upfront planning 
and documentation can save a lot of time and hassle during development. By planning and 
documenting your APIs and code modules up front you can reduce cross-functionality and 
unnecessary interdependence, which makes your code more robust and reduces unnecessary 
complexity. you don’t have to plan every nuance of every API and code module, but define 
the major interactions, parameters, and basic functions of the software. 

■■ Don’t think too far ahead. when developing a large architecture, the tendency is to 
overdesign and try to plan for all possible scenarios. Although a forward-thinking approach 
can be good, it is best to design for what is known. All too often, engineers design systems 
for the worst-case scenario that typically never happens. It’s the last 20 percent that takes  
80 percent of the time. you will end up spending more time trying to handle presumed 
edge cases, rather than focusing on the software that will be used most of the time.

■■ Give in to the fact that you may not be able to abstract everything. Abstraction is great, 
but trying to abstract away every possible interface is an exercise in diminishing returns. 
Instead, don’t preclude custom hardware interactions as part of your framework to account 
for the times when a generic interface just isn’t possible. Set realistic rules for your system 
that give you the ability to reduce abstraction layers. For example, restrict configuration files 
to a single format (ini, xls, database) to reduce the complexity of the mapping framework, 
or restrict actions to three independent hardware calls to prevent the need to implement  
a recursive Hardware driver API call. 

■■ Keep it flexible, scalable, and modular. Although flexibility, scalability, and modularity do 
add complexity, they are your best tools for developing large architectures. Here is where 
plugin architectures are extremely handy, because they define the low-level framework but 
let the details be implemented by unique code libraries. This means that new functionality 
can expand on old functionality without breaking pre-existing functions. A well-planned 
plugin architecture is the epitome of developing for what is known and expanding to new 
challenges as necessary.

Is It Worth the Effort?
Although the development of an abstraction framework can be time-consuming, even when 
implemented well, it is done because the payoff is often greater than the development effort. 
Several key factors can improve the payoff and make your framework more successful. many 
of these payoffs can be quantified by the time or effort saved. The table below outlines some 
typical costs associated with tasks and compares the difference between a nonabstracted 
system and one that uses a HAl/mAl abstraction framework.  
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you can use these numbers to expand on the previous scenario with the commercial product 
company and see if or when it makes sense to develop an integrated abstraction framework.

First, assume that you develop all four test sequences on your own. you must start by developing 
the framework. In the standard, In the standard, nonabstracted scenario, you must develop 
instrument-specific drivers. In the second scenario, you focus on using out-of-the-box abstraction 
when developing the drivers. In the third scenario, you develop an integrated HAl/mAl.

TASK
ESTImATE 

(STANdARd)
ESTImATE 

(ABSTRACTEd)
wHy THE PAyOFF?

Test software platform 
learning curve for new 
test engineers

60 hours 
per engineer

40 hours  
per engineer

mastering how to use an abstraction framework typically 
requires understanding the test executive as well as the 
framework. In either situation, the developer must understand 
how to interact with the test system hardware. when 
instrument-specific drivers are used, the engineer must know 
the details of each driver and how to use them. However, when 
learning an abstraction framework, the engineer needs to 
understand only the high-level actions to be performed, as the 
instrument details are left to the framework. Typically, these 
high-level actions are more intuitive and easier to implement 
than various instrument-specific drivers. 

development and 
debug of a basic 
functional test 
sequence (by an 
experienced engineer)

80 hours 
per sequence

40 hours 
per sequence

Test sequence development becomes much faster because 
the details of the hardware are stored in a single location, rather 
than in every driver call within the sequence. Tests interact with 
hardware from the uuT’s point of view, allowing the sequence 
to be more intuitive and better match the test procedure. In 
general, an intuitive framework can cut development and debug 
time in half.

Test sequence 
development and 
debug by a new 
engineer

120 hours 
per sequence

60 hours 
per sequence

The payback on development time is amplified when a new or 
less-experienced engineer develops test sequences. Because the 
framework imposes a set of rules and functions, less-experienced 
engineers can better use pre-existing steps to develop sequences 
when compared to using instrument-specific drivers and code. 
Furthermore, an intuitive framework allows product-minded test 
engineers to develop sequences without having to be experts 
on the underlying software language.

updating a test 
sequence for a failed/
obsolete instrument or 
new instrument 
requirement

8 hours 
for driver 

development 
plus 4 to 
20 hours 

per sequence

8 hours 
for driver 

development 
plus <1 hour 
per sequence

when an instrument in the system needs to be replaced, the 
test must change to account for it. In a nonabstracted platform, 
this means that every instance of the driver call must be 
updated for the new instrument. The more the instrument is 
referenced, the longer this can take. when using an abstracted 
framework, engineers may need to develop a new instrument 
driver, but after that is done, only the configuration file/
database needs to be modified.

moving a test 
sequence to a new 
ATE hardware 
platform

40 to 80 
hours 

per sequence

<8 hours 
per sequence

Occasionally, entire systems get upgraded and all of the tests 
must be migrated to the new system. Typically these new 
systems have very different instrumentation. whether using an 
abstraction framework or not, new drivers must be developed, 
however after those drivers exist, the test sequences must be 
updated to use them. with a nonabstracted sequence, this is 
very cumbersome, and can sometimes be easier to write the 
sequence again from scratch. However, an abstracted 
sequence can typically be updated in less than a day, all 
through the configuration file, without having to touch the test 
sequence software.

Table 4. Costs Associated with Tasks in Nonabstracted and Abstracted Systems
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By the time you have completed initial development, the integrated HAl/mAl approach is 
around 240 hours more than the standard, but out-of-the-box abstraction has cost only about 
20 hours more. However, no test program ends after initial development.  

Six months later, R&d finds that a few more measurements are required and the 32-channel 
multiplexer in the system is no longer sufficient, so it is replaced with a 4 x 128 matrix. you 
must now develop a new driver and update each test sequence to use the matrix instead of 
the mux. However, if you used a pre-existing abstracted driver, you would not need to do any 
driver development to handle the new matrix, and the function calls in the sequence wouldn’t 
need to change—only the details. By using an integrated HAl/mAl, the sequence updates 
would only need to be done in the channel configuration file.

Even now, the integrated abstraction layer hasn’t paid off yet, although the out-of-the-box 
hardware abstraction has almost broken even. Now imagine that a new test program comes 
along that requires you to test four more assemblies. unfortunately, you are too busy to develop 
these sequences on your own, and two new test engineers are brought onboard. you must 
train them on the system and have them develop the sequences.

TASK
dEvElOPmENT TImE 

(STANdARd)

dEvElOPmENT TImE 
(OuT-OF-THE-BOx 

ABSTRACTION)

dEvElOPmENT TImE 
(INTEgRATEd HAl/mAl)

Framework/driver 
development

80 hours 100 hours 500 hours

Test development (4 tests) 80 x 4 = 320 hours 80 x 4 = 320 hours 40 x 4 = 160 hours

New Total 400 hours 420 hours 660 hours

Table 5. An integrated HAl/mAl requires the most up front development effort.

TASK
dEvElOPmENT TImE 

(STANdARd)

dEvElOPmENT TImE 
(OuT-OF-THE-BOx 

ABSTRACTION)

dEvElOPmENT TImE 
(INTEgRATEd HAl/mAl)

New driver development 4 hours 0 hours 0 hours

update 2 simple test 
sequences for new matrix

2 x 4 = 8 hours 2 x 2 = 4 hours 2 x 1 = 1 hour

update 2 complex test 
sequences for new matrix

2 x 16 = 32 hours 2 x 12 = 24 hours 2 x 2 = 2 hours

Additional Hours 44 hours 28 hours 7 hours

New Total 444 hours 448 hours 667 hours

Table 6. The integrated HAl/mAl method is much easier to update, but still requires more development effort.
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TASK
dEvElOPmENT TImE 

(STANdARd)

dEvElOPmENT TImE 
(OuT-OF-THE-BOx 

ABSTRACTION)

dEvElOPmENT TImE 
(INTEgRATEd HAl/mAl)

Training/learning curve 60 x 2 = 120 hours 50 x 2 = 100 hours 40 x 2 = 80 hours

Test development (4 tests) 120 x 4 = 480 hours 100 x 4 = 400 hours 60 x 4 = 160 hour

Additional Hours 600 hours 500 hours 240 hours

New Total 1,044 hours 948 hours 907 hours

Table 7. The integrated HAl/mAl approach pays off in the long run when more tests are developed or significant changes are made.

At this point, the initial 500-hour investment in the framework has paid off by about 100 hours 
over the standard development practice. As new tests are developed, changes are made, and 
the product life cycle continues, there will be a continual return on the initial investment.

There are also many more subjective payoffs to using abstraction that are difficult to put a 
number on.  The calendar time to develop tests is greatly reduced as well, because a HAl/mAl 
makes it much easier to develop software before the hardware is fully defined. By maintaining 
a standard framework, you ensure a single repository where new drivers and measurements 
can be added, bugs can be managed, and code divergence among engineers can be reduced. 
Standardization helps keep everyone (test engineers, manufacturing engineers, and technicians) 
aligned, allowing better support of systems. Although there are countless other advantages, as 
described in detail in this document, let your abilities and ROI calculations help you understand 
what level of abstraction makes sense for you.
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Next Steps

TestStand
TestStand is industry-standard test management software that helps test and validation 
engineers build and deploy automated test systems faster. TestStand includes a ready-to-run 
test sequence engine that supports multiple test code languages, flexible result reporting, and 
parallel/multithreaded test. Although TestStand includes many features out of the box, it is 
designed to be highly extensible. As a result, tens of thousands of users worldwide have chosen 
TestStand to build and deploy custom automated test systems. NI offers training and certification 
programs that nurture and validate the skills of over 1,000 TestStand users annually.

learn more about TestStand

About Bloomy
Bloomy provides products and services for electronics functional test; avionics, battery,  
and BmS hardware-in-the-loop (HIl) testing; aerospace systems integration lab (SIl) data 
systems; as well as world-class labvIEw, TestStand, and veriStand application development. 
Bloomy is a 24-year NI Alliance Partner, placed in the top Platinum and Select tiers by NI 
since the program’s inception.

learn more about Bloomy’s UTS Software Suite, which includes an integrated HAl/mAl

©2016 National Instruments. All rights reserved. labvIEw, National Instruments, NI, NI TestStand, NI veriStand, and ni.com are trademarks of National Instruments. Other product and company names listed are 
trademarks or trade names of their respective companies.
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http://www.bloomy.com/products/electronics-functional-test/uts-software-suite
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Introduction
Every minute of every day, new projects are placed on the desks of test engineers with the 
expectation they develop measurement systems that not only meet specification requirements 
and release deadlines but also offer high quality and reliability. In an ideal world, engineers have 
the time and resources to perform in-depth research, modeling, and simulation to produce 
perfect systems. unfortunately, real-world project schedules do not typically permit the time 
and resources to develop perfect systems. In a System Integration Study performed by Control 
Engineering in August of 2014, only 67 percent of system projects were completed on time 
and within budget. In a world of tight release schedules and demanding project timelines, it 
is important to consider the aspects of a measurement system that can impact the quality of 
measurements, which, in turn, can increase risk to schedule, cost, and performance. These 
aspects range from the instrumentation selected to the quality of the connections and cables 
to the implementation of the measurement methodology. An overlooked area, however, is the 
impact thermals can have on measurement quality and measurement system reliability.

This paper equips you with the knowledge to learn more about your design to avoid risk. learn 
how thermals impact measurement quality, see basic design approaches, and explore thermal 
modeling tools for designing a rack measurement system.  

Importance of Thermals in Rack Designs
In a generic measurement system, thermals can develop in many ways; however, in a rack-mount 
measurement system, heat generation within the rack and heat exchange to the environment 
around the rack are the primary sources of thermal changes that can impact a measurement. 
you should be concerned with thermals for several reasons:

■■ Good design practices—Being aware of the implications of thermals and designing your 
system to account for them is a good design practice. By knowing how thermals may impact 
your system, you won’t allow thermals to become a major contributing variable in your 
measurements. Keep in mind that operating instruments outside of their specified temperature 
ranges may have an impact on the quality and life expectancy of that instrument, which is also 
a reason to maintain good thermal designs for your equipment.

■■ System uncertainty—Thermals will always exist and are difficult to eliminate completely. 
Therefore, by better understanding what they are, you are better positioned to account for 
them in your system uncertainty and can more accurately account for them in your 
measurement derivations and measurement results.

■■ System stability—Stability is important for a good measurement system. If variability is 
observed, often it is difficult to determine the root cause and/or how to address it.  Thermal 
changes in a system can lead to false results in testing because of this variability. Minimize 
this risk by controlling the thermals in your system.

■■ Product quality—Products require certain thermal environments to ensure optimal 
performance, specifically during adjustments. Minimizing the impact of system thermals 
on product performance can improve the overall product quality.
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Thermals and Instrumentation
Thermals should receive significant consideration with respect to instrumentation. Instruments 
specify certain temperature adherence requirements to meet specifications. Most instruments 
experience temperature drift, and measurement results will vary if the temperature is unstable 
or is beyond the adherence requirements. To truly understand and trust the measurement results 
from a test solution, you should understand and know this impact.

For example, take a look at some related industries such as telecom and IT that have 
developed best practices for recommended and allowable temperature ranges, which most 
device manufacturers follow. Some devices still have their own specifications, so the design 
objective here is to meet those individual device specifications as well as the industry best 
practices.The primary concerns in these industries include long-term reliability, system uptime, 
and a lower total cost of ownership (TCO), which are very relevant to automated test.likewise, 
automated test engineers should also consider the potential impacts that relate to rack 
systems and thermals.

The impacts of thermal mismanagement in these industries all tie to a higher cost of operation. 
For example, if the cooling system fails, the rising temperatures put stress on the rest of the 
system, resulting in reduced equipment lifetime. If the temperature is too high, IT systems can 
experience computation errors at the CPu level, resulting in application errors. Redundant cooling 
systems can be implemented, but increase the TCO.  Most importantly, downtime because 
of auto-shutdown results in loss of service and any downtime translates to loss of money.

National and International Standards
In regard to national standards, Network Equipment-Building System (NEBS) and the American 
Society for Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), have established 
guidelines and best practices for telecom and IT equipment, respectively. 

Whereas ASHRAE is an organization that focuses on best practices across a breadth of areas, 
NEBS is a more focused effort, specifically for telecom equipment. ASHRAE may reference 
NEBS for some of its guidelines related to enclosures and rack-mount equipment, but ASHRAE 
best practices appear to be more comprehensive for all aspects of the enclosure designs.

Although these national standards are not directly applicable to test and measurement 
certification, they follow many of the same principles and guidelines for rack design and 
performance that are relevant for automated test.

International standards that the International Electrotechnical Commission (IEC) creates relate 
to the thermal aspects of enclosures. Manufacturers of enclosures mostly refer to these for 
either designing or testing the enclosures or for providing usage guidance to customers.

■■ IEC 61587-1 specifies environmental, testing, and safety requirements for empty 
enclosures (that is, cabinets, racks, subracks, and chassis) in indoor conditions.

■■ IEC 62194-1 provides methods for evaluating the thermal performance of empty 
enclosures under indoor and outdoor conditions.
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The design objectives for the telecom and IT industries are similar to the test and measurement 
industry, but the primary focus areas and challenges are somewhat different. Design objectives 
in test and measurement focus more on meeting individual device specifications, because there 
is no universal standard for test and measurement equipment racks, though best practices from 
various companies in the industry exist. The primary focus is to ensure that each instrument, 
as well as the device under test (DuT), maintains alignment to its specifications. This comes 
even before long-term reliability or uptime, because those types of considerations become more 
relevant at much higher temperatures, while loss of required accuracy can occur at relatively 
lower temperatures.

In terms of challenges, automated test systems have some added constraints. One is that 
test racks are usually used in environments occupied by moving humans or in uncontrolled 
production facilities all around the world. This does add randomness in the overall thermal 
profile of the room/location, unlike unoccupied server rooms with stationary objects.

Figure 1. Server rooms/facilities have controlled environments, unlike test systems, which are placed into uncontrolled, chaotic environments.
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Impact of Thermals on the DUT, Test System, or Test Results
The first and most fundamental impact is on the accuracy of your instruments and DuTs. If 
you can’t ensure the correct ambient temperature for any of your instruments, its accuracy 
would have to be derated.

For example, your calibration could be invalid if the ambient temperature changed enough 
between adjustment and verification to change the instrument or DuT accuracy. This might also 
result in false failures or false passes in manufacturing. The best way to manage this risk is to 
account for thermal offsets in your measurement uncertainty calculations.

Even if the temperature is within the specified range of operation, you might notice some 
difference in data from different test stations. The same is true for data collected in development 
rather than data collected in a production environment, with changes in ambient temperatures 
around the test station being the primary cause for variations.

Most instruments follow the ambient temperature closely, albeit with an offset. This means that 
even a slight change in ambient temperature can translate into a change in the instrument’s 
temperature, which creates a rising potential for variation in data across test stations.

As a difference in temperature may result in data variation across development and production, 
it can also happen across verification and validation and test development. usually, verification 
and validation is performed on a benchtop setup in an office setting, whereas test development 
is done using a rack-mounted test station in a controlled environment. This results in a totally 
different environment for the instruments, even if the instruments and subsequent test system 
are the same. Some instruments even have alternate measurement specifications for certain 
temperature ranges, so it’s important you use the applicable specifications in your design and 
measurement calculations.

In addition, none of the previously discussed environments perfectly model the production 
manufacturing environment, so being conservative in your design to address the potential of 
these environments is recommended if no known environmental information can be applied. 
For example, the figure below compares environments by looking at room ambient temperature 
data over a period of a few hours at the front-top of a test station in an office cube area, as 
well as in a controlled environment. 

The controlled environment is a small room with dedicated air conditioning, so you see  
the thermostat turning on and off more clearly with sharper temperature changes; this 
temperature is maintained around 23 °C to 25 °C. The office cube area is slightly warmer, 
though more stable.
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The slight increase in both temperatures is the start of a workday (far right of chart); when 
people arrive, the temperature increases from body heat and doors opening. Note that the 
temperature for office cube areas can vary with time of year, location, floor, and other factors. 
In contrast, the controlled environment temperature is fairly constant throughout the year 
because of a dedicated air conditioner. In light of all these facts, you should always keep track 
of the ambient temperature while conducting verification and validation or developing tests 
and collecting data. This helps in data analysis if differences are seen across verification and 
validation data and test data.

Figure 2. Room Ambient Temperature
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Thermal Profile of Rack-Mounted Systems
When thinking about the heat distribution in any system, there is a temptation to oversimplify it. 
The most common simplification involves the perspective of “cold at the bottom, hot at the top.” 
you might also think that the temperature gradient is uniform across the rack, but in most cases, 
these simplifications are not exactly true. 

In a real system, a number of variables contribute to the thermal profile, and as such, the 
thermal distribution varies. If an infrared thermometer gun or thermocouples were applied 
appropriately to a system, you would see characteristics like local heat zones and nonuniform 
temperature gradients in the horizontal or vertical axis of the rack system. This is because you 
are not dealing with just hot and cold air in isolation of everything else; the thermal profile 
depends on the rack layout, fan speeds of individual devices, location of inlet and outlet vents, 
power dissipation of each device in the system, and the airflow forced by the combination of 
all fans in the system.

This is important because it means that the top of the rack may not necessarily be the point 
needing the most attention, which is directly counterintuitive to one of the most common 
oversimplifications regarding thermals. A thorough evaluation is required to understand the 
unique thermal profile of each system and address areas of concern.

The following example helps explain how thermals can behave in a typical rack-mounted  
test system.

Figure 3. The common assumption of an even distribution of cold at bottom to hot at top will deliver bad results.
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The first things noticed are the localized heat zones, which depend on the system’s rack layout 
and device specifications as well as usage. In this example test station, the power supply has 
the warmest air around it, followed by the PXI chassis. Other parts of the test station appear to 
be colder than these localized heat zones, so depending on each system, there might be a need 
to address these localized heat zones differently. Another thing to notice is that the bottom heat 
zone is nonuniformly distributed in the x-axis.

What Causes Thermal Nonuniformity?
usually, this nonuniformity is because of the device airflow patterns. For example, the power 
supply is composed of individual power supply units and a power supply mainframe. As you can 
see, the mainframe has its airflow from the left to the right. That means most of the warm air 
is on the right-hand side of the instrument.

Figure 5. Top View of a Modular Power Supply With Airflow Direction Indicated

Figure 4. localized heat zones create a variety of temerpatures throughout the test rack.
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The exhausts at the rear end are from individual modules; not all of them might be exercised 
at the same time, so the rear might not usually be as warm as this side. Moreover, the thermal 
profile of a rack system changes with usage, so the characterization is more involved than simply 
looking at the temperatures of a given case.

How Should the Thermal Profile of a System Look?
There are a few aspects of the rack-mounted system that you need to understand to determine 
how the thermal profile should look. To begin, you need to understand the unique needs of 
each system: 

■■ What are the required system-level specifications? 
■■ What environment will the system be operating in? 
■■ What instrumentation will be used and what are the temperature requirements for  

those instruments?
■■ Is keeping the temperature within a range enough or does your application require  

the temperature to be stable as well?

For example, if your DuTs are PXI modules and you need to power the DuT PXI chassis on 
and off while switching DuTs, the thermal profile of your rack would change repeatedly. These 
repeated changes require awareness of any instability in the rack’s thermal distribution.

lastly, not all points inside the rack are necessarily required to maintain the same temperature. 
It is typical to have some areas warmer than others, as long as the inlets of all instruments are 
drawing air that is in the specified temperature range.

Design Approach
This next section highlights best practices for developing a rack-mount system from design 
through rollout. 

Before starting a rack design, you should understand several key elements about the 
instruments you are using that will have an overall impact on the design:

■■ Evaluate the Air Inlet and Outlet for the Device 
First, investigate your instruments and understand where the air inlets and outlets are on 
the module. The ability to provide the temperature requirements for the device is heavily 
dependent on the temperature at the air inlets and where you exhaust the heat generated 
from the instruments. Having an understanding of this will help you to successfully map 
out a rack design.

■■ Understand the Specifications and Temperature Requirements 
Often, devices specify certain storage, operating, and calibration temperatures. Which ones 
do you care about and how do you interpret each of them? understand the way in which each 
instrument specifies temperature and what the impact is on the instrument performance 
or specifications—specifically, those specifications that impact warranted performance. For 
example, the 3458A states that you must maintain 23 ˚C ± 5 ˚C of ambient temperature to 
warranty the specifications of the device. Further, it states that you must autocalibrate the 
device if you have a relative change of ± 1 ˚C from the last autocalibration. The first specification 
is absolute to ambient, and the second is relative to the last calibration. understand the 
differences and how that might impact your solution.
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■■ Understand the Definition of Ambient for the Device 
Most traditional box instruments define ambient temperature as the temperature of air in the 
environment that surrounds the instrument. Typically, for PXI products and chassis, ambient 
temperature is defined as the temperature of the air immediately outside the fan inlet vents 
of the chassis. Because chassis like PXI-1045 require a clearance of about 1.75 inches for 
correct flow of air, you can safely assume that measuring the temperature within this 
clearance close to the inlet fans would give you the ambient temperature you care about. 
 
A common mistake is to assume that the ambient temperature for your instrument is the 
same as the temperature in the room where you are using the instrument. In general, this 
may hold true if you are using your instrument on the desktop with no influencing heat sources 
in close proximity; however, in a rack-mount design, you must consider the localized air 
temperature inside of the rack as the ambient temperature for your instrument. Instruments 
inside a rack design are more susceptible to thermal issues. 
 
Depending on your application and use of the instrument, be sure to accurately understand 
what your ambient temperature for each device may be. 

Before selecting your rack or getting into any other specifics of the rack design, understand the 
expected thermal load that your rack may experience. This is easily done by performing a power 
budget of all of the electronics planned for the system. An understanding of power consumption 
provides insight into the thermal load.

Power Budget for All Electronics
Consider all instruments and peripherals in the design. This can include measurement devices, 
PCs, monitors, battery backups, or anything that may be a heat-generating source within your 
rack. For these devices, reference the product specifications to determine the power consumption 
of each. In general, product specifications list the worst-case power consumption (under full 
use or full load), which often isn’t representative of the general or average performance of the 
device over time. Often, 60 percent rated max power consumption is used as a general guide 
for design. Having said that, in the future you may use your rack design for other purposes, which 
may result in an increase in thermal load, so consider adding some guard-banding to your 
calculations as you see fit.

Ideally, if you can measure the actual power consumption of your devices ahead of time, this 
gives the best outlook of the overall power consumption; however, this may not be feasible 
while planning your system. As a best practice, come back after the system is designed and 
make these measurements for documentation purposes.
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Temperature Requirements and Airflow Profile
Based on instrument temperature requirements and airflow profile, map out the general 
locations wanted for instruments. Heat rises, so, often, the rack is cooler toward the bottom 
and warmer toward the top. Plan to place your most sensitive instruments toward the bottom 
of your rack design. you can use techniques to establish an acceptable thermal environment 
for your instruments in other rack locations, but often that comes at a cost.

usability may be a constraint that drives the placement of some of your instruments, but evaluate 
and understand the impact of that placement. Maybe it requires additional consideration of how 
to handle airflow or how to provide cooler air to a device intake that is somewhat unconventional. 
Keep that in mind as you continue with your design. Also, account for any clearance constraints 
specified by the instruments. Often, instruments specify a certain distance that must be 
maintained around the device or in proximity to its inlets and outlets. Be sure that these 
specifications are met.

Rack Size Based on Layout
The layout should give you an idea of the size of the rack required to house the instruments. 
Remember to factor external constraints, such as floor space and room height, into your  
rack selection.

Figure 6. Example of Instrumentation Blocking Exhaust in a Rack System
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The exhaust air from all instruments should have an unobstructed pathway to exit the rack. In 
this example layout, you can see a whole instrument blocking the exhaust from instruments 
below it. Another bad practice is to have the hot and cold air short circuited. you can fix these 
by laying out the rack more cleverly, but start with a good understanding of the instruments’ 
inlets and outlets and expected airflow.

Rearrange the instruments to provide a continuous airflow path from all instrument outlets.  
In addition, use mechanical separations to ensure that all instruments are getting inlet air from 
outside air when possible.

For situations where the air inlet of an instrument is located on the inside of the rack, because 
of how the instrument is installed, the exhaust from one instrument may be recycled into the 
inlet of another instrument. you could have multiple instrument exhausts feeding into each 
other’s inlets. This could raise the ambient temperature inside the rack significantly, and would 
increase as you go up the rack.

Outlet   

Figure 7. Example of Proper Exhaust layout in a Rack System
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In these situations, the ideal approach is to provide an isolated path from outside the rack to 
the inlet of the instruments. This ensures that the ambient temperature for an instrument is 
understood and controlled.

Remember, it’s not enough to look at only the inlet temperatures. Be sure to provide adequate 
clearance for every instrument per the instrument’s specifications so that it has proper insulation 
and airflow around it. It may be tempting to ignore these constraints because often it results in 
quite a bit of unused or wasted space. To get the specified performance from of an instrument, 
however, these clearance specifications must be followed.

From the image, it may appear that you are creating localized heat pockets between the 
instruments. Keep in mind that the red heat arrows are shown just to illustrate that this heat 
would be blocked from entering the air inlet. Design your isolations paths to the inlets of your 
devices to allow air to flow around and up the rack. Most rack assemblies provide adequate 
spacing to the sides of all instruments to ensure that the appropriate “chimney effect” can be 
established. Any heat that your instruments exhaust should also be allowed to flow around 
your inlet isolation barriers. There are many ways to ensure that the heat is properly extracted 
from the rack without impacting your instruments. These are just a few examples.

Figure 8. Example of Custom Inlet Venting in Rack Design
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Heat  Transfer and Airflow
As you saw earlier, most instruments’ outlet temperatures follow the ambient temperature 
trend. The difference or offset comes from self-heating and air heating: 

■■ Self-heating—Any component on an electronic device will heat up above the ambient 
temperature because of warm air coming from other components as well as self-heating. 
Self-heating is not in your control.

■■ Air heating—A cleverly laid out rack system can minimize air heating and a correctly 
designed rack cooling system or room cooling system can take care of ambient heating. 
So, control this offset while designing your system.

In this case, the two chassis have slightly different self-heating and air heating because of 
different PXI cards installed and different locations in the rack.

Passive Cooling 
Passive cabinets are designed to maximize the ability of the internally mounted equipment to 
cool itself through its own fans. In this method, the equipment produces airflows, and the 
surfaces and ventilation in the rack exchange heat.

Active Cooling 
Whereas passive cooling simply relies on the equipment fans and heat transfer, active 
cabinets use additional, strategically placed fans and\or blowers to supplement airflow, thus 
increasing heat dissipation.

Figure 9. Passive cooling relies on the fans of the internally mounted instrumentation, whereas active cooling uses auxilary fans and 
blowers mounted in the rack.

Passive Cooling Passive Cooling Active Cooling

Versus
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More often than not, forced-air cooling is needed for rack-mounted test systems. Having one, 
properly sized exhaust fan at the top of the rack is typical; however, the vents and airflow 
need to be planned according to the exhaust fan location. Putting a fan tray in the middle of 
the rack is recommended to help with airflow if your air path has bends, obstructions, or maybe  
a concentration of high-power instruments in one area. you may also consider localized heat 
removal if your rack has hotspots that you need cooled. you can use individual fans or fan trays 
for this purpose.

Fan Capacity 
To get a good idea about how large your fan should be, you need to calculate the cubic feet per 
minute (CFM) of air the fan should be able to move with consideration given to the total power 
wattage of all devices in the rack and the temperature difference between the air inside and 
outside the rack.   

Higher CFM comes with some trade-offs like cost, vibration, and acoustic noise. Also, however 
high your fan’s CFM is, you can’t cool your rack below the room ambient anyway. So the idea of 
this equation is to arrive at a good balancing power between all these parameters. Air resistance 
also plays a part in the ability of a fan to cool. Air resistance increases based on the cross-
sectional area of objects that are in the path of the airflow, whether it be the area of opening 
for intake area or area of devices in the path of the airflow. Therefore, margin should be given 
for the CFM rating of the fan to ensure it can overcome air resistance and still provide the 
necessary air movement.

When evaluating the total wattage, avoid using the rated power of the devices; this is usually 
the maximum possible power that a device can dissipate, but rarely does a device use this much 
power consistently. A good rule is to use something between 50 to 60 percent of the rated 
power. Or better yet, use the PDu of your rack system to get the actual power being delivered 
and use that value.

Figure 10. Active cooling options range from internal trays to individual side or top-mounted fans.
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Delta T (ΔTc) equates to the amount of heat you want carried away from the rack. This comes 
from looking at the requirements of your devices or by looking at simulation results. It might 
vary, depending on the location inside the rack—usually higher at instrument outlets or at the 
top of the rack, so be sure to understand what the appropriate delta T is for your system, and 
how to confirm you are achieving that delta T in practice.

Modeling and Validation
If a system is costly, includes long lead times for components, is part of a critical or strategic 
application, or contains many unknowns, modeling should be part of the design process.

Modeling the Rack Design
Apart from theoretical calculations, modeling and simulation of your rack system can greatly speed 
up your design optimization and provide you with solid feedback on what changes to make.

Enter as many design specifications as possible into the software to get the most accurate 
modeling. If you cannot locate a necessary specification, evaluate similar components/
instrumentation and ask senior members of your team if they have experience with these 
devices to gather estimates. The fewer unknowns you have, the better your modeling will be.

When you have exhausted research on your design, either through evaluating the instrument 
temperature requirements, performing calculations to optimize airflow and temperature, or 
simulating the design, you have done as much as possible short of performing real-world 
qualification testing. At this point, complete the fabrication of your design and validate  
the performance.

To characterize the performance, use temperature sensors or thermal imaging cameras. Focus 
on the critical areas within the rack that are of importance, such as the air intake of the rack 
and the air intakes of the instruments. Collect temperature data across your rack design while 
powering the rack and exercising the instruments in a general fashion as they may normally be 
used for the products to be testing. This gives you the most realistic view of how temperature 
will behave.

 you may also want to exercise certain worst-case loading conditions, such as when the thermal 
load may be at its highest or lowest, to ensure that your design can still accommodate these 
conditions. Consider the time of day of testing, the duration of testing, and test conditions 
(how many operators are present, what normal interactions someone might have with the 
station, and so on) as factors that can impact your results. Analyze the results carefully to 
look for any previously unidentified anomalies or issues that you may need to address.

Validation Methods
First, use standard graphs, equations, and simulations early in the design to gain a general 
comfort level with the approach. Second, perform system characterization using temperature 
sensors or thermal imaging to validate the design and iterate on it until wanted requirements 
are met. last, perform gage R&R studies to validate stability and performance to ensure 
station-to-station performance and production test to validation to verification agreement.
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Maintainability Through System Monitoring
Consider implementing a health and monitoring system that gives you the ability to evaluate 
the system in real time to ensure that the expected performance is still being met. This ensures 
you can at least make informed decisions during testing by having feedback on the system 
performance, but may also lead to better understanding of measurement data and better 
prediction of system maintenance.

Areas of focus include:

■■ Stand-alone system to monitor system performance
■■ System watchdog for reporting maintenance issues
■■ Feedback for tests to validate test conditions
■■ Historical logging for evaluation and trend analysis

Applying Design Criteria to Product

Accounting for Thermals in Specs/Limits
When collecting data using your rack design, do not overlook the effects of thermals when 
considering specification validation of setting manufacturing test limits. If there are differences 
between expected results and actual, thermals may be the cause of these differences.

Spec Validation
Know the assumptions used during your spec derivations. If the ambient conditions while 
collecting real data differ from your derivations, be sure to account for them. Ensure that you 
are experiencing the performance you expect under the provided temperature conditions.

Limit Calculations
Similar to spec validation, account for temperature differences and variation in your limit 
derivations. If the product specifications are stated as a certain range and you are testing in 
an environment that provides a different temperature range, account for the difference by 
accounting for the temperature coefficient of your device appropriately. For example, NI switch 
modules are typically specified at 0 to 55 °C, however, the general temperature environment 
that they are tested under would be the standard manufacturing test floor, which carries on 
a maintained 24 °C ± 4 °C. Subtract the equivalent, worst-case temperature coefficient from 
the specifications and uncertainty of your measurement when establishing your test limits.

Figure 11. Example general-Purpose Specifications Model
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Independent System Monitoring

Monitoring Temperatures in Real Time
Monitoring temperatures in real time gives you the ability to make dynamic decisions during 
your testing. you may determine that you are violating a certain operating requirement, thus 
you may halt your testing; or you may determine that you need to perform a self-calibration or 
institute a delay before continuing testing to account for stability. lastly, just having the data 
and logging it historically may provide insight in the future if questions arise about performance 
or correlation to measurement results.

For example, you could use an embedded, independent system to monitor and control certain 
aspects of a test station design. you can monitor temperature and make it available in your 
test execution to make decisions, as well as monitor and manage resources in the station to 
support parallel test. In general, you can use an independent monitoring system for several 
tasks and it can be beneficial during not only the design and validation of your rack system but 
also the deployment and long-term use.

Figure 12. Example Independent Monitoring System using CompactRIO
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Although many options exist, you can use an approach like this to:

■■ Monitor 
■■ Ambient temperatures throughout the rack
■■ Airflow, current draw, and internal temperatures of your instruments 
■■ Instrument health for maintenance concerns
■■ Doors of the racks using proximity sensors to detect if the system has been accessed
■■ Temperature conditions to implement thermal shutdown mechanisms to safeguard  

the system
■■ gain data to make real-time decisions in your test application
■■ log this historical data for future analysis 
■■ Provide feedback to the user of the station through light poles, indicators, or displays on  

the status of the station and to report any out-of-tolerance conditions

A health and monitoring system can help you to evaluate the system in real time, make 
informed decisions during testing, and better understand measurement data and predict 
system maintenance.
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Next Steps

NI Alliance Partner Network
The Alliance Partner Network is a program of more than 950 independent, third-party 
companies worldwide that provide engineers with complete solutions and high-quality 
products based on graphical system design. From products and systems to integration, 
consulting, and training services, NI Alliance Partners are uniquely equipped and skilled to 
help solve some of the toughest engineering challenges.

Find an Alliance Partner

NI PXI Chassis Cooling
NI chassis are designed and validated to meet or exceed the cooling requirements for the 
most power-demanding PXI modules. Chassis designed by NI go beyond PXI and PXI Express 
requirements by providing 30 W and 38.25 W of power and cooling in every peripheral slot 
for PXI and PXI Express chassis, respectively. This extra power and cooling makes advanced 
capabilities of high-performance modules, such as digitizers, high-speed digital I/O, and RF 
modules, possible in applications that may require continuous acquisition or high-speed testing.

learn more about the NI PXI Chassis Design Advantages

Build Your PXI-Based Test System Today
NI is the creator and leading provider of PXI, the modular instrumentation standard with more 
than 1,500 products from more than 70 vendors. Select the appropriate chassis, controller, 
and modules for your application, and let the advisor recommend the necessary components 
and accessories to complete your system.

Configure your PXI system

©2016 National Instruments. All rights reserved. CompactRIO, labVIEW, National Instruments, NI, and ni.com are trademarks of National Instruments. Other product and company names listed are trademarks or 
trade names of their respective companies. A National Instruments Alliance Partner is a business entity independent from National Instruments and has no agency, partnership, or joint-venture relationship with 
National Instruments.
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Introduction
Building a test system without a plan for how you will connect your instrumentation to your 
device under test (duT) is similar to trying to drive your car without wheels. your car may have 
best-in-class horsepower and Italian leather seats, but you aren’t going to reach your destination 
without wheels. Mass interconnects and test fixtures are where the rubber meets the road for 
automated test systems. after determining your instrumentation, the number of switches you 
need, and the location that your switches will reside in the test system, the next step is to 
choose a suitable mass interconnect system and design an appropriate fixture that seamlessly 
mates your duTs to the rest of the system. 

Overview of a Mass Interconnect System 
a mass interconnect system is a mechanical interconnect designed to easily facilitate the 
connection of a large number of signals either coming from or going to a duT or duT fixture. 
Rather than connect each signal one by one, a mass interconnect system connects and 
disconnects all signals at once. For automated test systems, a mass interconnect system 
usually entails some interchangeable mechanical enclosure through which all signals are routed 
from instruments, typically in a test rack, to the duT, making it easy to quickly change duTs or 
to protect the cable connections on the front of the instruments from repeated connect and 
disconnect cycles.

Figure 1. a mass interconnect system simultaneously connects a large number of signals between your test system and duT, providing an 
easy way to reuse common test equipment with multiple test fixtures for different duTs. 
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RECEIvER

System-Side Components
The system-side components comprise everything between the instrumentation and the mass 
interconnect. System-side components are part of the common components that stay with the 
test system, even if you change the interchangeable test adapter (ITa) and fixture to interface 
with various duTs. Below is a brief explanation of each of the system-side components. 

Receiver
The receiver is the core component of the test system side of the mass interconnect. It is the 
mechanism that provides the ability to connect multiple instruments simultaneously to the 
duT. The receiver system includes the frame, mounting hardware, receiver modules, and the 
connections from receiver modules to instrumentation. 

Mounting Hardware
Mounting hardware holds the receiver on the front of the rack or PXI chassis. It is typically 
mounted on the front side of a 19-inch rack, providing easy access for the test operator. 
Sometimes, the mounting hardware has a hinge, or is mounted on slides, for easy access to 
the instruments or cables behind the receiver.

Receiver Modules 
Receiver modules are mounted into the receiver so that all appropriate connections can be 
made from instrumentation to the receiver’s main connector, a type of standard connector 
that is connected to the duT side of the mass interconnect system, along with all other receiver 
modules, in one mechanical action. The connections are routed from the instruments and other 
auxiliary equipment to the appropriate contacts within the receiver modules. These are typically 
specified according to density, bandwidth, current, or other special-purpose requirement of 
the signals being passed through them. 

Figure 2. a mass interconnect system can be simplified into two parts. The system-side components, often referred to as the receiver, 
connect instrumentation to the mass interconnect, acting as the “socket” for the ITa. alternatively, the duT-side components, often referred 
to as the ITa, connect the duT to the mass interconnect, acting as the “plug” for the receiver. The receiver and ITa mate together with a 
single mechanical action, providing an easy way to reuse a common set of test hardware with various duTs.  
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To connect instruments and other auxiliary equipment to the receiver modules, two methods 
can be used independently or in combination:

■■ Cable Assemblies—With cable assemblies, standard or custom-made cables are connected 
from the instruments directly to contacts in the receiver. Cable assemblies offer more flexibility 
with mounting and receiver module location, but typically have longer signal paths (24 in. or 
more) between the receiver module and instrument, which can affect performance if not 
managed correctly.

■■ Interface Adapters—Interface adapters typically connect all I/O from the instrument 
connectors (for example, dIN, d-SuB, SCSI, and so on) to the receiver modules. The adapters 
are always directly in line with the instrument and use printed circuit boards (PCBs), flex 
circuits, or cables to provide the most efficient connection method for the particular instrument. 
Interface adapters offer the advantage of minimizing the signal length (usually 6 in.) and 
variable signal performance between the receiver module and the instrument, but are rigid 
and therefore require more upfront planning and precise, inflexible mounting locations.

Figure 3. Cable assemblies (top) offer flexibility with mounting and receiver module location but typically have longer signal paths. PCBs 
(middle) and flex circuits (bottom) minimize signal length, preserving signal quality but offering less flexiblity than cable assemblies.

Table 1. Cables are useful for designing and characterizing a device, but a mass interconnect is ideal for a production test environment.

Cables
Mass Interconnect 

With Cables
Mass Interconnect With 

PCBs or Flex Circuits

Frequent Changeover Between duTs ○ ● ●
Optimized for design and Characterization ● ○ ○
Optimized for verification and validation (v&v) ◒ ◒ ◒
Optimized for Test Production ○ ● ●
Signal Quality ◒ ◒ ●
Continuity of Performance (System to System) ◒ ◒ ●
Ease of System Maintenance and upgradability ○ ● ●
System Reconfiguration (that is, Scalability) ○ ● ●
Ease of duplication (for example, global deployments) ○ ◒ ●
Instrument to Module Pin Efficiency ○ ● ◒
Repairability in the Field ● ● ○
Instrument Card Rev. Control Tolerance ● ● ○

Below ○  average ◒  above ●

Flex Circuit

PCB

Cable

http://ni.com/automatedtest
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DUT-Side Components
The duT-side components comprise everything between the mass interconnect and the fixture 
or duT. duT-side components are assembled as one unit, often referred to as the ITa, and can 
be easily interchanged to test different duTs with a common set of instrumentation. Below is a 
brief explanation of each of the duT-side components. 

ITA
The interchangeable test adapter (ITa) is the core component of the duT side of the mass 
interconnect, encompassing the enclosure, or mechanical frame, that contains the ITa modules 
and contacts that mate with the receiver and transfers the system inputs and outputs to the duT. 
If the receiver is the socket, the ITa is the plug. Many test systems are designed to test many 
different duTs by interchanging different ITas while using the same test system and receiver. 

ITA Modules
The ITa modules are mounted inside the ITa in much the same way that the receiver modules 
are mounted inside the receiver. They provide the main interconnect with the various signals 
routed through the receiver and expose those connections through cables, PCBs, or other 
connections inside the ITa enclosure. The ITa modules and contacts are chosen to match the 
receiver modules and contacts previously specified. The appropriate signals are then routed 
within the enclosure to the fixture or duT connectors.

Enclosure
The enclosure is the mechanical housing around the ITa and corresponding ITa cables/modules. 
It is common to integrate the ITa enclosure and test fixture into a single frame or physical 
platform on which to set the duT, as in consumer electronic or semiconductor testing, or have 
a single cable connected between the ITa and the duT. although you can choose from standard 
enclosures, in practice almost every enclosure is customized in some manner to suit the 
requirements of the duT.

Test Fixture
Each duT is different and requires a unique method of connection to achieve the most efficient 
testing. For example, some duTs benefit from a single cable between the ITa and duT, whereas 
others benefit most from an integrated test fixture, such as a bed of nails fixture, providing a 
direct connection method without cables. 

http://ni.com/automatedtest
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How to Choose your Mass Interconnect System
upfront planning and design of your Mass Interconnect approach ensures that your test system 
can perform to its full potential, unlocking the spectrum of capabilities of your chosen instruments, 
stimulation and data collection requirements. However, performance is only one aspect of 
the decision-making process and should be combined with a cost comparison of different 
approaches. associated overall cost computations should also include design verification 
procedures, life cycle management of custom components, documentation, and overall 
maintenance costs spread across the anticipated life of the automated test equipment and 
fixturing. Working with a provider of Mass Interconnect solutions upfront can save you a lot 
of time and money.

The following general steps can help you to determine the mass interconnect components 
designed into your system, but you should also seek advice from a mass interconnect specialist 
and an NI alliance Partner, such as MAC Panel or Virginia Panel Corporation (VPC), who can 
walk you through this process. Mass interconnect providers also offer configured solutions, 
predesigned for specific PXI assets and common instrumentation, reducing the time and effort 
required to configure and document the interface. Simply provide a list of the instruments and 
other assets required in your system and they can provide a corresponding configured part 
number list for the mass interconnect (interface) and mating (fixture) components.  
 

1. Determine your system hardware. 
First, determine the system hardware needed to test your duT. This includes instruments, 
switching, any auxiliary items that you need to route to the duT (for example, the power supply), 
and the size and style of test rack.

Figure 4. Considerations for Mass Interconnect Systems

dETERMINE SySTEM HaRdWaRE

dETERMINE RESOuRCES TO ROuTE FROM TEST SySTEM TO duT

dETERMINE IF a MaSS INTERNCONNECT IS IdEal FOR yOuR aPPlICaTION

uSE CaBlE aSSEMBlIES dETERMINE THE SIzE OF MaSS INTERCONNECT

CHOOSE CONNECTION TyPE FOR all RESOuRCES

CaBlES PCBs or FlEX CIRCuITS

CHOOSE MOuNTINg HaRdWaRE

CHOOSE ITa MOdulES

http://ni.com/automatedtest
http://www.macpanel.com/products/family/scout.aspx
http://www.vpc.com/pxi
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2. Determine which resources from the test system need routing to the DUT. 
depending on the complexity of the test system and the device being tested, you will most 
likely route all required instrument and auxiliary component connections through the mass 
interconnect system. Some test components do not need to be routed through the mass 
interconnect, such as PXI embedded controllers or RaId storage systems.

When choosing the resources that you plan to route through the mass interconnect, consider 
how your test requirements might change in the future so you can build a flexible test system 
that can meet future requirements. For example, if you have extra resources, such as extra 
instrument or power supply channels, that you do not need for your current generation of duTs 
but think you might need for future duT generations, then you can save time and money by 
routing those resources in anticipation of future changes. 

3. Decide the best style of interface for the application—cables or a mass interconnect. 
This choice depends on a number of factors, including the complexity of the system, technical 
performance requirements, flexibility, and total cost of ownership. use Table 1 as a guide for 
your decision, but seek advice from a mass interconnect specialist to ensure you make the 
correct choice for your particular test system. assuming that you decide to use a mass 
interconnect, the following steps can help you determine the size of receiver and ITa and select 
receiver modules, ITa modules, and mounting hardware. 

4. Determine the size of the receiver and ITA. 
you can choose from many different receiver sizes and styles, depending on the answers to 
the previous questions. Consider reserving spare slots in the receiver for future expansion. 
Similar to planning instrumentation for a PXI system, a general guideline is that a minimum of 
20 percent of the slots should be unpopulated in an initial design. Note that the ITa size will 
always match the receiver size.

5. Choose receiver modules and a connection method (cables or interface adapters)  
to accommodate routing of all necessary resources. 
your choice of receiver modules and connections depends on your test goals and the chosen 
instruments and any other auxiliary requirements. again, you can use Table 1 as a guide for 
your decision, but seek advice from a mass interconnect specialist to ensure you make the 
correct choice for your particular test system. you can choose from a wide range of contact 
styles and predesigned interface adapters, patch cords, or predesigned cables to meet the 
requirements of any signal type, including:

■■ low-frequency aC signals 
■■ Power
■■ RF signals
■■ Microwave signals
■■ Thermocouple
■■ Fiber optics
■■ Pneumatic
■■ High-speed signals and data transmission

http://ni.com/automatedtest
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6. Choose mounting hardware. 
after selecting your receiver modules and connection method, the next step is to choose the 
mounting hardware, which depends on several factors. Most systems using a mass interconnect 
will mount to a 19 in. rack assembly. With a cabled system, it is often advantageous to mount 
the receiver on a hinged frame, or on slides, to allow access to the instruments and chassis. If 
using interface adapters, the receiver is mounted to the PXI chassis using standard mounting 
flanges and the receiver and chassis are then mounted onto a slide shelf within the rack. 

7. Choose mating ITA modules and contacts. 
Configure the ITa modules and contacts to match your choices from step five. It may not be 
necessary to fully populate contacts in the ITa modules to completely match the contacts in 
the receiver modules. In most cases, all the resources from a particular instrument will be passed 
to the receiver module. However, not all of these resources are required on the ITa side to test 
a particular duT; therefore, not all ITa modules need to be fully populated with contacts.

Overview of a Test Fixture
a test fixture is a device that provides repeatable connectivity between your test system and 
your duT, and it is often custom designed to meet the needs of a specific duT. using a mass 
interconnect at the fixture back side, you can interchange various test fixtures with a common 
rack of instruments; you can reuse the test equipment by easily interchanging the test fixtures 
for different duTs, which is ideal for a universal tester or high-mix tester. 

When designing a test fixture, know in advance what types of tests you plan to perform, 
because the needs for device design, duT characterization, verification and validation (v&v), 
and production testing are quite different and require different features from a test fixture. 

Figure 5. Production test systems require rugged, streamlined test fixtures that you can easily duplicate, whereas design and 
characterization instrument systems require the flexibility that cables, probes, and Kelvin clips provide.
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Design and Characterization
during a product’s design phase, you must have the flexibility to easily connect and disconnect 
one or more cables or pins from the duT to the measurement instrumentation to test or 
troubleshoot any and all elements of the design. For this reason, you need a highly flexible way 
of interfacing with instrumentation rather than a streamlined or rugged test system with mass 
interconnect and fixture. Many design engineers use instrumentation with cables, probes, and 
Kelvin clips, which provide a way to easily change connections. In addition to troubleshooting, 
design engineers often characterize, or describe, the actual behavior of a device, which contributes 
to device specifications and guides test engineers in developing a v&v station or production 
test system.

Verification and Validation
v&v is the process of checking whether a specific product meets design specifications by 
testing a statistically representative set of the product. 

Verification
verification is an objective process to check that a device meets the required regulations and 
specifications. you often perform verification during the design and development phase, as 
well as after the development phase is complete. during the development phase, verification 
testing sometimes simulates or models the behavior of the rest of the system to predict or 
preview how a device might behave when it is complete. after development is complete, 
verification testing can take the form of regression testing, repeating many tests designed to 
ensure that the device continues to meet the design requirements as time progresses. 

Validation
validation is a more subjective process, involving subjective assessments that a device meets 
the operational needs of the end user by returning to the problem statement that created the 
need for a new product. Requirements for validation testing can come from user requirements, 
specifications, and/or industry regulations. When validating specifications, the goal is to ensure 
that the specification captures user requirements, not ensuring that a given device meets its 
specifications. 

The test data collected during the v&v process is also used to determine the test limits for the 
production test system. although only a small set of a given product undergoes v&v, almost 
all final products pass through production test. as a result, fixtures designed for v&v are often 
required to make fewer connections between the duT and instrumentation, allowing them to 
be less rugged than those used for production test. 

http://ni.com/automatedtest
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Production Test
Production, or functional, test is typically performed at the end of the manufacturing process 
and tests whether the product meets the published specifications and quality standards. 
Many times, functional tests are automated to optimize throughput and reduce errors from 
human interaction. Sometimes, production tests include the emulation or simulation of the 
environment in which the product will eventually operate. Most importantly, functional tests 
use the final connectors that a customer will eventually use rather than various test points 
directly on a PCB. 

Because every device built and shipped undergoes production testing, you must design your 
fixture to be rugged to maximize uptime and be easy to use and ergonomic. you should also 
minimize the amount of interaction that the test operator must provide. Extra time spent aligning 
the duT to the fixture or connecting cables from instrumentation to the fixture negatively impacts 
throughput and increases test costs, as well as increases the likelihood of errors because of 
human interaction. Finally, production test systems, including a test fixture, should be easy to 
duplicate for additional deployments. 

Fixture Considerations
When designing a test fixture, ensure that it uses proper wiring types and techniques, uses PCBs 
rather than cables when possible, and automates as many connections as feasible. also create a 
preventive maintenance plan for your test fixture to ensure a long and successful deployment. 

Use Proper Wiring
Wires are often sources of noise and error, so you should select the best type of wires for your 
test fixture. To ensure signal integrity, some wires offer features such as insulation, shielding, 
guarding, or twisted pairs. Some instrument manuals suggest using specific cables, but it often 
depends on the type of measurements being performed. For example, twisted pair cables are 
ideal for rejecting noise when performing differential measurements. using a shielded cable is 
also a technique for rejecting noise, but it is important to use the correct grounding scheme 
based on the grounding of your signal source and input configuration. Finally, guarding is often 
used to remove the effects of leakage currents and parasitic capacitances between the HI and 
lO terminals of a digital multimeter (dMM) or source measure unit (SMu). 

Figure 6. To preserve signal integrity, different cables offer different features such as shielding, insulation, twisted pairs, or guarding. 
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Minimize Operator Interaction
The goal of a mass interconnect system is to increase test equipment reuse and reduce the 
amount of operator interaction that can cause errors, lower throughput, and increase the 
total cost of test. In addition to limiting user interaction with a mass interconnect system, a 
good test fixture should maximize the number of connections made between the test fixture 
and duT with a single interaction from the test operator. For example, some test fixtures 
complete multiple connections with a connection method that is either driven with a single 
operator handle, or automatically with an electric or pneumatic motor. For production test, 
the connections are typically made using the connector that a customer eventually uses to 
interface with the device. 

Build a Scalable Fixture That Is Easy to Duplicate
Certain wiring techniques can preserve signal integrity, but consider using PCBs within your 
test fixture to improve signal integrity performance and reduce the wiring burden on the test 
operator or technician during the setup phase. using a test fixture that makes many connections 
at once is good for throughput, test repeatability, and user ergonomics, but it is still important 
to reduce the amount of wiring within the test fixture and replace them with a PCB when 
possible, as this can further improve signal integrity and reduce the time required to set up 
and wire each duplicate test system. The trade-off is that designing a custom PCB requires 
more upfront cost and effort, but pays dividends during system setup for the first system and 
for each reproduced test system. 

Create a Preventive Maintenance Plan for Your Test Fixture
To ensure long-term support for your test system, include test fixture maintenance plans in your 
overall test system maintenance plan. This should include inspection and/or replacement of 
connectors, cables, pogo pins, relays, and other components at regular intervals throughout the 
test system’s lifetime. When choosing inspection cadence, consider the failure rate of a given 
component. To judge failure rate, take into account the vendor-supplied mean time between 
failure (MTBF) or the in-service failure rate specific to your organization. although both are useful 
when comparing or analyzing instrumentation, the in-service failure rate can be more useful, 
because it is indicative of how an instrument is actually used for a particular application. In the 
case that in-service failure rate data is unavailable, you can derive a theoretical failure rate from 
the MTBF data to plan an inspection interval that aligns with your cost and risk tolerance.

http://ni.com/automatedtest
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Next Steps

NI PXI Advisor
The PXI advisor helps you compare instrument options and configure a PXI-based test system, 
including PXI chassis, controller, modules, software, services, and auxiliary items. 

Configure your test system using our PXI Advisor

MAC Panel
MaC Panel is a solution source for companies looking to achieve reliable, cost-effective, electrical 
connections in a test or measurement environment. In addition to a full line of mass interconnect 
products, featuring the MaC Panel SCOuT mass interconnect system designed for PXI, MaC 
Panel also provides custom wiring services, sheet metal fabrication, and custom design assistance, 
providing a range of options to support automated test equipment on a global scale. 

learn more about MAC Panel

Virginia Panel Corporation
virginia Panel Corporation (vPC) is an ISO certified manufacturer of Mass InterConnect solutions. 
With over 150 employees, vPC is able to design and manufacture large or small I/O connectors 
and interfaces for the Test and Measurement industry. In addition to Mass InterConnect solutions 
for PXI platforms, vPC also provides several value-add services like high speed PCB design, 
pre-configured test solutions, custom design assistance, web access to product support files, 
and online configuration tools.

learn more about VPC

NI Alliance Partner Directory
The NI alliance Partner Network is a program of more than 1,000 independent, third-party 
companies worldwide that offer complete products, as well as integration, consulting, and 
training services. Some of these companies, such as MaC Panel and vPC, offer custom cabling 
solutions, mass interconnect systems, and complete fixturing solutions. 

Browse the Alliance Partner Directory

©2016 National Instruments. all rights reserved. National Instruments, NI, and ni.com are trademarks of National Instruments. Other product and company names listed are trademarks or trade names of their 
respective companies. a National Instruments alliance Partner is a business entity independent from National Instruments and has no agency, partnership, or joint-venture relationship with National Instruments.

http://ni.com/automatedtest
http://ni.com/pxiadvisor
http://www.macpanel.com/products/family/scout.aspx
http://www.vpc.com/PXI/
http://www.ni.com/alliance/
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Introduction
given more complex devices, test engineers need to create more complex and higher mix test 
systems, often with tighter deadlines and lower budgets. One of the most important steps in 
creating these test systems is deploying test system software to target machines. It is also 
commonly the most tedious and frustrating step. The abundance of deployment methods today 
typically adds to the irritation of engineers simply searching for the cheapest and fastest solution. 
In addition, test system developers face many considerations and sensitivities specific to 
their system.

Deployment, for the purposes of this guide, is defined as the process of compiling or building a 
collection of software components and then exporting these components from a development 
computer to target machines for execution. The reasons test engineers employ deployment 
methods rather than run their test system software directly from the development environment 
come down mainly to cost, performance, portability, and protection. The following are common 
examples of inflection points when a test engineer will move from development environment 
execution to a built binary deployment:

■■ The cost of application software development license for each test system begins to exceed 
budget limitations. using deployment licenses for each system offers a more attractive and 
efficient solution.

■■ The source code for the test system becomes difficult to transport due to memory limitations 
or dependency issues.

■■ The test system developer does not want the end user to be able to edit or be exposed to 
the source code of the system.

■■ The test system suffers lower execution speed or memory management when run from the 
development environment. Compiling the code for execution provides better performance 
and employs a smaller memory footprint.

 
This guide recommends and compares different considerations and tools to address the difficulty 
and confusion that surrounds test system deployment. although there are many different topics 
of test system deployment that could be addressed in this guide, such as source code control 
best practices or creation of installers, the selected topics should cover the majority of universal 
deployment concerns. The end of each section offers a best practices recommendation for a 
basic use-case and an advanced use-case: 

■■ The basic use-case is a simple test system composed of an executable that runs test steps 
in sequence and calls a handful of hardware drivers. This type of system usually comprises 
less than 200 test functions. 

■■ at the end of each basic use-case best practice, is a handful of warning signs or indicators 
for when one should consider the advanced use case. 

 
The advanced use case represents a large-scale production test system that uses a combination 
of executables, modules, drivers, web services, or third-party applications to execute a high 
mix of different test sequences. This type of system is often in the range of hundreds or even 
thousands of test functions.
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Managing and Identifying System Components

Defining Components
In software development, a component is any physical piece of information used in the system, 
such as binary executable files, database tables, documentation, libraries, or drivers. The first 
step to completing successful deployments is identifying the components associated with a 
test system and ensuring that each component has a deployment method in place. This step 
can vary widely in complexity. For example, components for a simple test system could be a 
single executable and necessary hardware drivers. 

Complex System Components
In a complex test system, however, these components are often XMl configuration files, 
database tables, readme text files, or web services. This increase in a system’s complexity 
opens the door for more advanced deployment options. For example, it’s possible that the 
configuration file needs to be updated frequently to calibrate acquired data to seasonal weather 
changes, whereas the main executable rarely needs an update. It would be unnecessary to 
redeploy the executable along with the configuration file every time an update is needed, so 
the configuration file may employ a separate deployment method than the executable. 

Figure 2. Example of a Test System With Complex Dependencies
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Figure 1. Simple Representation of a Test System Executable That Depends on a DaQ, Serial, and DMM Driver
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In addition to identifying each system component and devising its deployment method, it is 
important to identify the relationships between the system components and ensure the 
deployment methods do not interrupt those relationships. In the example of the frequently 
updated configuration file, the engineer might have to install the configuration file to the same 
location on each deployment system so that the executable can locate it at run time.

Dependency Tracking
Maintaining the relationships between dependencies involves assembling a dependency tracking 
practice that ensures each component’s dependency components are deployed. although this 
may seem obvious after manually identifying each system component, dependencies can often 
be deeply nested and require automatic identification as systems scale. For example, if the 
executable in System B was dependent on a .dll to execute correctly, the engineer creating the 
deployment plan may have either forgotten to identify the .dll file as a necessary component 
or been unaware of the dependency. In these cases, build tools come in handy by automatically 
identifying most, if not all, of the dependencies of a built application. 

Here are examples of build software applications:

■■ LabVIEW Application Builder—Identifies the dependencies (subVIs) of a specified set  
of top-level VIs and includes those subVIs in the built application

■■ TestStand Deployment Utility (TSDU)—Takes a TestStand workspace file or path as 
input and identifies the system’s dependency code modules; automatically builds and 
includes these modules in a built installer

■■ ClickOnce—Microsoft technology that developers can use to easily create installers, 
applications, or even web services for their .NET applications; can be configured to  
either include dependencies in an installer or prompt the user to install dependencies  
after deployment

■■ JarAnalyzer—Dependency management utility for Java applications; can traverse through  
a directory, parse each of the jar files in that directory, and identify the dependencies 
between them 

Figure 3. unexpected Dependencies in a Complex Test System
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Relationship Management
Commonly, relationships exist not only between the main test program executable and its 
associated components but also between each of the individual components. This brings into 
question the nature of the relationships between different components or software modules. 
as systems scale, resolving dependencies between different libraries, drivers, or files can 
become extremely complex. For example, a test system could use three different code 
libraries with the following relationships, shown in the figure below, to each other.

For these complex systems, it is usually necessary to employ a dependency solver to identify 
dependency conflicts and manage unsolvable problems. although it is possible to write a 
dependency resolver in-house, engineers can instead put in place a package management 
system to manage dependencies. an example of a package manager is Nuget, a free, 
open-source package manager designed for .NET framework packages. another example is 
the VI package manager for labVIEW software that gives users the ability to distribute code 
libraries and offers custom code library management tools through an aPI. 

Best Practices
Basic: For basic or simple systems, it is usually possible to keep track of all the necessary 
components manually. using a software application or package manager to manage dependencies 
might be unnecessary and require too high of an up-front cost to set up. However, warning signs, 
such as consistently running into missing dependency issues or a growing list of dependencies, 
usually point to the need for more advanced dependency management. 

Advanced: Complex systems are easier to maintain and upgrade when a scalable dependency 
management system is in place. Whether this means using a package manager to diagnose 
relationships between packages or a software application to understand and identify dependencies 
of various components, maintaining such a system is critical to long-term success. 

Figure 4. library B’s reliance on version 4.4 of library C causes an unsolvable dependency issue as library a relies on version 4.5 of library C.
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Hardware Detection

Hardware Assertions
a test system that requires a specific hardware setup needs to determine that this hardware  
is present on the system and execute contingency plans for when the hardware is absent or 
incompatible in its deployment plan. although developers frequently complete hardware 
assertion manually by visually inspecting the test machine and matching the hardware 
components to the original development system, it is good practice to assume the test 
system is being created for a third party. How would a customer of the test system know 
they have incompatible hardware? Can the system adapt to the correct modules in incorrect 
slots or ports? Can the system resolve or adjust for missing hardware? answering these 
questions early on makes for simple scaling and distribution of test systems. 

Hardware Standardization
The ultimate goal for hardware assertion is to find no differences between the expected 
system and the actual physical hardware system. To this end, it is often most efficient to first 
standardize each test system on the set of hardware components they will use: 

■■ Documented—The list of components in the standard set of hardware should be accessible 
for every new system. It is critical that this documentation contain information about the 
provider, product numbers, order numbers, count, replaceable components, warranty, 
support policy, product life cycles, and so on.

■■ Maintainable—One of the most difficult issues for hardware standardization is ensuring 
that the hardware components used in each test system will still be available in the future. 
Often, older hardware is indicated as in end-of-life (EOl) by the manufacturer and requires 
a refresh of the standard set of test system hardware components. This refresh is often 
expensive in terms of both hardware upgrades and test system downtime. Working with a 
hardware manufacturer to discuss life-cycle policies for hardware components can offset 
challenges in the future. Most hardware manufacturers, such as NI, provide life-cycle 
consultancy and a slow roll-off in each hardware component’s life cycle.

■■ Replicable—The necessity to distribute hardware globally or even regionally should be 
considered. Ensuring a hardware distribution method is in place to quickly construct new 
systems in remote locations is an important concern. Maintaining a pipeline for spare 
hardware components for maintenance or emergency replacement is also important for 
many systems. 

Power-On Self-Test (POST)
Even though the correct hardware for the test system may be present and connected properly, 
it is also important to do simple testing of the hardware to ensure that it will behave as expected 
once the system is running. Fortunately, most hardware components contain a preconfigured 
self-test designed by the manufacturer to perform a simple check of the device’s channels, ports, 
and internal circuit board. upon providing power to each test system, a self-test procedure 
should be performed for all connected devices to act as an early check for malfunctioning 
hardware. For example, each NI device features a self-test that can be called programmatically 
through the device’s driver aPI. The first step when powering the test system can then be 
calling a self-test on each device and warning the operator of any malfunctioning hardware.
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Alias Configuration
unfortunately, standardizing on a hardware set does not completely ensure identical configurations. 
Commonly, hardware configuration software, such as Measurement & automation Explorer 
(MaX), is required to remap hardware devices to aliases. For example, upon installing all the 
hardware components and powering the system, engineers can use MaX to detect NI hardware 
present on the system and use Windows Device Manager to find non-NI hardware. Subsequently, 
a .ini configuration file can be edited to map hardware devices correctly to aliases. The figure 
below shows an image of a possible output of this process.

Programmatic Configuration
libraries like the System Configuration aPI for NI hardware in labVIEW software make it 
possible to programmatically generate a list of all available live hardware and configure an 
alias mapping. For example, a test system executable could call into the System Configuration 
aPI’s Find Hardware function to generate a list of available NI hardware. From there, the alias 
property for each device could be set to a predefined name through the Hardware Node. This 
has the potential to cause issues in a system, such as mapping a hardware device to the 
inappropriate alias. Therefore, engineers should use it in conjunction with another safeguard 
like manual confirmation of the mapping list or a standardized hardware set. 

Best Practices
Basic: For basic or simple systems, it is important to ensure that the expected hardware  
is present on the system. Hardware standardization is a best practice for all systems and 
especially important as the number of hardware systems begins to increase. The chassis, 
modules, and peripheral devices necessary for proper execution of the test system should be 
documented and revisited regularly. However, verifying that the right devices are live on the 
system can often be done through manual inspection with a tool like MaX instead of a 
programmatic or reconfigurable solution. as a hardware system grows in number of modules 
and devices, it may be necessary to move to a more advanced solution to prevent missing 
hardware issues. 

Advanced: In complex systems, keeping track of what hardware is necessary or present  
on the system should be done with a combination of different solutions. Just as in the basic 
best practices, hardware should be standardized and documented across systems. To detect 
malfunctioning hardware, a power-on self-test (POST) should be developed to ensure the 
connected hardware will function as expected. In addition, a programmatic or minimally 
manual alias mapping system should be used to automatically remap the expected devices 
to the system’s aliases when hardware standardization fails. 

Table 1. hw_config.ini File used to Map Physical Hardware to Test System aliases

Alias Device Name

PXI NI-4139 PXI 1 Slot 1

PXI NI-3245 PXI 1 Slot 2

PXI NI-2239 PXI 2 Slot 1
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Dependency Resolution

Dependency Assertions
It is good practice for a plan to be in place to address existing and missing dependencies on 
deployed systems. Often, the test machine being deployed to will already have some of the 
test system image’s dependencies installed to it. For smaller systems, it may be a good idea 
to simply reinstall all dependencies to ensure they are present. However, for larger systems, 
reinstalling all dependencies can potentially be avoided by first checking whether those 
dependencies are present on the system. This practice is referred to as dependency assertion 
and can help reduce deployment time but comes at the cost of needing to plan for 
dependency differences. The Componentization section further discusses componentizing  
for faster deployments.

For example, a test system might be compatible with both the 14.0 and 15.0 versions of the 
NI-DaQmx driver. although the test system might call for NI-DaQmx 15.0 to be installed, it 
might allow the 14.0 version to act as this dependency. However, allowing the 14.0 version 
instead of the 15.0 version, although compatible, might change how the test system acts. 
Certain test steps may be skipped or different functions called. all of these changes would 
need to be documented and tested. 

The second element of dependency assertion is deciding how to handle missing dependencies. 
as stated earlier, a good practice to follow is to act as if the test system is being deployed to 
a customer’s machine. Should the engineer completing the deployment be notified of the 
missing dependency? Should the missing dependency silently install in the background or will 
the user need to go find and install the dependency manually? answering these questions 
early on can allow for faster deployments and appropriate handling of missing dependencies. 

Best Practices:
Basic: For basic test systems, dependency resolution and assertion is often unnecessary. 
Installing all of the test system’s dependencies, regardless of whether they are present in the 
system, is frequently simpler than attempting to identify missing dependencies and install 
only the missing elements. as the test system scales, total system install times may increase 
to the point at which developing dependency assertion and resolution tools becomes a more 
attractive solution.

Figure 5. Dependency assertion
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Advanced: Deployment times can quickly scale to unreasonable amounts, even with solid network 
connections or compressed images. For most advanced test systems, some amount of 
dependency assertion is necessary to prevent a reinstall of all components. Tools like the 
System Configuration aPI to find NI software installed on a system or the wmic command 
set to generate a list of all programs on a Windows machine can be incorporated into 
deployment processes. This can allow installers to skip specific components or allow for 
version differences. 

Release Management
Often, engineers need to know which version of software image is currently deployed to  
the test system or be able to provide a release deployment history. If these are necessary 
requirements, there should be a release management system in place to address each of the 
following questions:

■■ Which release is currently deployed to System a?
■■ What is the status of the most recent deployment to System B?
■■ Where have releases 1, 2, and 3 been deployed?
■■ What is the history of releases for System a? 

 
In most test environments, engineers answer these questions with a pencil and clipboard system, 
however, tools exist to automatically record release metrics and provide documentation on the 
release history for a specific system. These tools for release management can be incorporated 
into an integrated development environment (IDE) or exist as stand-alone release management 
tools. Some examples include:

■■ Visual Studio Release Management—The Visual Studio IDE is shipped with tools to 
automate deployments, trace release history, and manage release security. 

■■ Jenkins Release Plugin—With this plugin for the Jenkins continuous integration (CI) 
service, developers can specify pre- and post-build actions to manage releases for their 
Jenkins-integrated development.

■■ XL Deploy—This application release automation (aRa) software can scale to enterprise 
levels and provide visual status dashboards, security, and analytics for managing releases.

 
although the above examples serve as good tools for IDEs and stand-alone deployment 
solutions, more commonly, release management tools are found in conjunction with CI servers 
and end-to-end deployment processes. This is intuitive because the question of what specific 
code is present on a certain machine is more applicable to deployment processes than which 
release version is on a certain machine. For compiled system images, this can be difficult to 
ascertain by manual observation. Tracking the code from development to deployment is 
necessary for release management best practices. 



ni.com/automatedtest

Software Deployment10

End-to-End System Automation
Efficient release management is a necessary component in developing a more complex 
end-to-end process for test system deployments. From development to deployment, each 
process in series relies on its predecessor; if source code is managed well, testing and 
building can be managed in turn. With good testing and build processing in place, release 
management can be a simple extension of the original system. The following diagram 
displays a typical end-to-end system. 

In this setup, test system developers regularly develop and commit source code to a version 
control repository. From there, a CI service can pull the source code into its own repository and 
build and test the code appropriately. at this point, either automatically or manually, developers 
can move and store builds that pass the CI tests to a build server or repository. Here, on the 
build server, release management takes place with reporting and tracking to link each software 
build to a specific test machine. usually, the test machines initiate the deployment process 
through a request to install a specific release of the test system; however, developers can 
also configure build servers to push images onto a chosen machine.

In cases where even basic systems need to employ a level of release management, the most 
pragmatic solution will reflect the inherent complexity of the release requirements. If the 
requirement is to track which version is deployed to a system, manual versioning through a 
configuration file or as a component of building an executable can be sufficient. If requirements 
expand in scope, the number of test systems increases, or application version numbers grow, 
it will be necessary to use a defined release management system. 

Best Practices:
Advanced: Frequently, a complex test system in need of release management will be most 
successful with some form of end-to-end automation. This can most simply be done through 
a CI service such as Jenkins or Bamboo that ties release management to release testing and 
source code control. 

Figure 6. Developers submit code to a version control repository that can then be built and tested in a CI server. From there, the 
builds can be stored in a build server and undergo release management. 
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Release Testing

Regression Testing
In software engineering, regression testing refers to the process of testing a previously 
developed system after changes to the system are made. The purpose of regression testing is 
to maintain integrity for each release and track bugs in the system to specific updates or patches. 
For componentized systems, regression testing is especially important to determine if an 
upgrade to module a causes unexpected behavior in module B. For example, upgrading the 
NI-DaQmx hardware driver in the system could cause issues with a hardware abstraction 
library that called a function in the older NI-DaQmx version that is now deprecated in the 
newer. There are two types of regression testing: functional testing and unit testing.

Functional Testing
In testing systems, the most important questions to ask about a software update is, will this 
change break the functionality of the system and does the system still behave the way it was 
intended? Functional testing, which verifies that for a set of known inputs, the system produces 
expected outputs, can help answer these broad questions about the system as a whole. This 
type of testing usually takes a “black-box” approach; inner mechanisms of the system are not 
analyzed, only whether the output of the system is as expected. For test systems, this could 
be a verification that hardware configuration updates, driver changes, or test step additions do 
not change the original testing functionality. Engineers can perform functional testing on a test 
system using simulated devices under test (DuTs) that are calibrated to pass or fail certain 
tests. For example, a system that tests for whether an object is a circle is made up of four 
components: a camera controller, circumference sensor, diameter sensor, and volume sensor. 
If the system is updated from version 1.0 to 1.1 and a change to the diameter sensor is 
introduced, the second circle being tested, in the diagram below, would originally pass the 
circle tester and then fail after the update. 

Figure 7. a small update to a module in the test system can cause the functional test to malfunction, resulting in false failures.
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Unit Testing
Whereas functional testing is for the complete system, unit testing is for specific modules, 
components, or functions. This type of testing is intended to track the quality of specific 
portions of the test system as opposed to just correctness. For example, if test results are 
being logged to a database, a unit test may be done on the database controller to measure 
data throughput. In this way, any changes to the database controller not only can be analyzed 
for proper logging functionality but also answer the question of whether the software change 
sped up or slowed down the system’s logging capability. In addition to helping find bugs, unit 
testing can link observed performance enhancements or diminutions to specific changes. The 
circle tester example from before can clarify the difference between unit testing and functional 
testing. assuming the diameter sensor software component of the circle tester was upgraded 
as before, a unit test of the diameter sensor can be done instead of a functional test of the 
complete system. For the unit test, one might provide the specific component with binary 
image data that represents a circle with a specific diameter and test for whether the output 
matches the known diameter of the circle. In this way, the module’s correctness can be verified 
and quantitatively measured, say, to measure the execution time of the module. 

In this specific case, the upgrade slowed down the module significantly. It can also be deduced 
that, because the functional test of the system failed after the upgrade and the unit test passed, 
the software bug most likely resides in the communication between the camera controller 
and diameter sensor. This ability to verify system correctness and individual module 
functionality can ensure that only quality releases get deployed to test machines.

Testing Process
To save development time, regression testing in most test systems happens in conjunction with 
source code control, building, or release management. This allows reuse of testing code that 
should require more infrequent updates. However, it is also important to plan and budget 
development time for building out test code. Commonly, regression testing is a component of 
either a CI service or IDE, where source code control, building, and testing all happen in sequence. 

Figure 8. after performing a unit test of both the v1.0 and v1.1, the processing time is identified as a problem after the update, 
causing false failures in the process functional test.
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Best Practices:
Advanced: For all test systems, there should be some level of functional testing before deploying 
a system to a new machine. This functional testing can range from the simple case of manually 
running the application in the development environment using simulated hardware to a slightly 
more complex case of running through a series of functional tests based on a configuration file. 
unit testing may be unnecessary for simpler, more monolithic applications but needs to be 
considered as a test system scales in complexity. as more modules are added, specific, customized 
tests are necessary to track bugs or ensure the system meets certain specifications.

Best Practices:
Advanced: Complex test systems should not only have functional testing over a wide array of 
inputs done for each new release of a test system but also have unit tests developed for each 
individual module of the system. Both methods of regression testing should be done at the most 
effective point in the deployment process. For example, performing functional testing after 
building each release and unit testing at each source code control submission point would 
represent a good mix of regression testing. Often, these tests are mandatory or self-evident 
for systems, especially in the aerospace and defense industry. 

Componentization
Because deployment time is a common concern for large test systems, it is preferable to 
update only a single component of the test system that requires a change rather than rebuild 
the entire system. The Dependency Resolution section of the guide partially addresses this 
practice, but it deserves a separate discussion around developing modular or plugin-based 
architectures with the goal of more efficient deployments. Whichever architecture an engineer 
chooses, best practice dictates that there exist regularly updated peripheral modules and more 
core modules that, when developed, stay relatively constant without a need for recompile. 
This practice naturally leads to questions about update frequency, explored later in this section.

Deploying Plugin Architectures
a plugin in the context of software deployment is a code module whose installation is 
independent of the main application’s installation, is functionally independent of other plugins, 
abides by a global plugin interface, and avoids name conflicts when used in a built application. 
The main application then should be able to load each plugin dynamically, call each plugin by a 
standard interface, and use each plugin as an extension without requiring a recompile. When 
developed successfully, a plugin framework allows for componentized deployments—updating 
or installing only specific or missing plugins and not recompiling the main application or any 
unaffected plugins.

For example, a plugin framework developed for a simple application might consist of a main 
executable that searches through a plugins directory at load time, or periodically during run time, 
and executes that plugin through a standard interface. In this way, plugins can be continually 
deployed into the plugins directory of the system without editing the main application. 
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Hard Drive Replication
Commonly, code libraries, hardware drivers, or specific files are part of a test system’s core 
and do not need to be updated as frequently as other modular, peripheral components. In these 
instances, hard drive replication can be a good method for standardizing the environment as 
a baseline for further development. Engineers can replicate and clone the hard drive of a 
development machine or ground-zero test machine onto other test machines. When the drive 
has been duplicated, test machines have a common starting point that often includes a main 
test application or program, necessary hardware drivers, a system driver set, and critical 
peripheral applications, such as MaX for hardware configuration. It is important to recognize, 
however, that hard drive replication comes with its own caveats, such as requiring identical 
computer hardware between test machines, or memory-intensive image distributions that 
make it an unsuitable method for frequent software updates. 

an example of using hard drive replication for laying a foundation for further test development 
is using Symantec ghost, a popular hard drive replication tool, with the TestStand 
Deployment utility (TSDu). In the first frame of the image below (a), the development 
machine replicates its core software stack (red) onto the target machine. This core software 
stack is a combination of the Windows OS, hardware device drivers, run-time engines, and 
MaX. after the target machine has been imaged, development on the development machine 
takes place (B) to create a test sequence using TestStand and labVIEW (green). The developer 
can then move the test sequence to the target machine using the TSDu. For frequent 
updates to the test sequence, the developer can continually use the TSDu to save 
development time, as the core software stack does not need to be changed. Occasionally, 
development might occur on the development machine that is not deployed to the target 
machine (C). This system mismatch can potentially lead to problems with missing 
dependencies. In this instance, a developer could, instead of using TSDu to update the target 
machine, choose to reimage the development machine and replicate it onto the target machine 
to realign the two machines (D). Moving forward, the developer can continue to make frequent 
updates with the TSDu and whenever system mismatches arise in the future, can use ghost 
to reimage the hard drive of the target machine.
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Continuous Integration and Continuous Deployment
Continuous integration (CI) refers to the practice of continuously submitting, building, and 
testing code, usually on a separate CI server. In most test systems, CI services are used to 
provide the necessary framework for building, testing, and deploying system software. These 
services run regularly and automatically on the CI servers with a wide variety of configuration 
options to create build schedules, automated testing rules, release deployments, and so on. 
One of the most obvious advantages to using a CI server is the ability to track and manage 
different builds and deployments. 

Figure 9. TSDu and Hard Drive Replication Example
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Table 2. CI services provide dashboards to track application builds and deployments.
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CI tools range widely in capabilities and open-source developers and software companies both 
develop them. The latter of which has the added benefit of providing support for system setup. 

■■ Jenkins—Termed the “leading open-source automation server,” Jenkins is one of the most 
popular CI services today as it allows for easy installation and configuration. Jenkins can 
also be used with virtually all programming languages as it can interface with programs 
through their command line interface or through a wide array of Jenkins plugins. 

■■ Bamboo— The software company atlassian produces Bamboo, the leading proprietary CI 
service. In addition to the testing, building, and integration functionality that Bamboo provides, 
atlassian boasts “first-class support for deployments” over Jenkins. 

■■ Travis CI and Circle CI—These two open-source CI services offer great extension capabilities 
but only integrate with projects that reside in a gitHub repository.

Overall, the goal of CI is to provide automatic and configurable tools that give developers the 
ability to continue coding while their software is built and tested. 

Best Practices: Basic:
Basic: Componentization is often not a large concern for simple systems. although the system 
uses very few code modules or does not employ a plugin architecture, each test system can 
usually be deployed as a stand-alone application. However, if install times become very large and 
begin to slow down deployment times, it may be necessary to move to a more componentized 
approach that removes the need for a reinstallation of all components. 

Advanced: When test systems become large, complex, or use a plugin architecture, it makes 
sense to move away from a monolithic deployment image and toward a modular deployment 
where each component can be updated separately. using a plugin architecture is a quick way 
to achieve this modular setup but can also be accomplished through configuration of CI services.

Practical Scenario
an audio equipment production company that does functional electrical testing on its products 
using TestStand and labVIEW is an example of a more advanced deployment framework. The 
test department of the audio equipment manufacturer has over 50 test systems distributed 
globally. Each system uses a PXI chassis that houses a high mix of modules, including data 
acquisition, digital I/O, digital signal acquisition, digital multimeter, and frequency counter cards. 

The test engineer in charge of deployment follows the outlined procedure for every new test 
system to be brought online.

1. Creating the Base System Image
For each new test system, there is a list of necessary software, both company made and third 
party, needed to ensure security of the system. The company’s IT department requires this 
software and it includes antivirus software, VPN security applications, and Windows group 
Policy configuration specifications. Secondly, each system needs a base software set to 
execute its necessary test sequences. The primary component of this software is a set of 
drivers cross-checked with the published NI System Driver Sets. That is, one version of the test 
system might contain NI-DMM 14.0, NI-Switch 15.1, NI-FgEN 14.0.1, and NI-DaQmx 14.5 
drivers. In addition, run-time engines for labVIEW 2014 and TestStand 2014 are needed to run 
the main test system executable. The following chart outlines all the necessary software.
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The first step of deploying to a new test system is to create this image on a development 
machine and replicate it using a hard drive imaging software. This software image may have 
been created previously, opening up the possibility to reuse an image across multiple machines. 
This helps reduce deployment cost as installation needs to be done only once per batch of 
identical test machines.

after the base system image has been generated by installing all of the necessary software, 
Symantec ghost is used to replicate the hard drive and upload the new image onto a build 
server. The build server is located at headquarters and possesses the sole requirement of 
maintaining a large memory footprint for multiple system images to reside on the server.

2. Deploying the Base Image 
after uploading the base image to the build server, the test engineer connects the new test 
system to the company network, and then uses a web interface to connect to the image 
server and browse the various base system images available for install. after selecting the 
appropriate version, Symantec ghost images the new system’s hard drive with the replicate 
image. at this point, the test system has the base necessary software it needs to execute 
test sequences.

3. Validating Hardware
after physically installing the necessary hardware modules to the PXI chassis and turning on the 
system, the test engineer needs to map the system aliases to the live devices in software. 
although given a list of modules with associated slot numbers, the test engineer must use the 
configuration system setup to map the aliases so that module locations can change between 
systems. For this company, each test system uses a .ini file that the engineer edits to provide 
a mapping of live system hardware to test system aliases. This is done by identifying devices 
in MaX and manually editing the .ini file to create the appropriate map. 

Table 3. When creating a base system image, it is important to explicitly list the versions of the drivers and run-time engines that will 
be included.

SOFTWaRE VERSION

NI-DaQmx Driver 14.5.0

NI-DMM Driver 14.0.0

NI-Switch Driver 15.1

NI-FgEN Driver 14.0.0

labVIEW Run-Time Engine 2014

TestStand Run-Time Engine 2014

Internal antiVirus Software 3.2
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4. Installing the Application and Components
at this point, the test system has installed its base system image and validated its live hardware. 
Now, the engineer is tasked with installing the most recent version of the test application. In 
this case, the application is a TestStand installer, generated by the TSDu, that includes all of 
the necessary code modules, sequence files, and support files. To explain how this installer 
is generated, it is important to look at the development system employed by the production 
company. Each developer creates either a specific test step in labVIEW or test sequence in 
TestStand and submits these to an apache Subversion source code control repository. This 
repository is located on a server that is running a CI service, Jenkins. The Jenkins service is 
employed to run tests on submitted code modules, validate sequences with the TestStand 
sequence analyzer by command line, and then build the necessary test sequences into installers 
using the TSDu command line interface. after each installer is built, it is automatically deployed, 
along with its necessary support files, to a build server using the Jenkins Deploy Plugin. 

5. Executing
after the TestStand installer has been put on the build server, the test engineer can download 
the installer onto the new test system. The engineer can then run the installer, locate the main 
test executable, and begin running the base test system. 

With this deployment system, the test engineer can quickly and easily make changes to each 
test system. The hard drive imaging system in place can be used for either large code revisions 
or driver set upgrades while the more lightweight build server can be used to deploy either 
small changes to the main test application or individual components and plugins. 

Figure 10. This test deployment system is using an image server to store and deploy base system images that keep the various test 
stations in sync with each other. Developers then regularly upload their source code to a continuous integration and source code control 
server that periodically builds and tests the submitted code. Once the submitted code passes all of the necessary tests, the built image 
is added to a build server that handles the large-scale distribution of the test software system image.
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Summary
Test System Deployment can often be a complex process especially as the complexity and number 
of the test systems scale. Establishing deployment processes early on in the development of 
a test system is the key to completing scalable and successful deployments. Ensuring that all 
of the necessary test system artifacts have been identified and defined and have a deployment 
method in place is the first step to creating a successful deployment process. Putting dynamic 
hardware configuration options in place can also be an important consideration of many deployment 
systems. For larger and more advanced systems, dynamically resolving dependencies between 
the deployment image and the target machine can help reduce both the complexity of the 
deployment process and the time required to upgrade or reimage a system. Managing and 
testing each release of a deployment image is another important consideration for test system 
developers. Whether this is done through a continuous integration service or configuration files, 
it is important to maintain a scalable release management system for distributed deployments. 
The deployment methods put in place for a test system will always be highly customized to the 
functionality and nature of the test system. The sections listed in this guide provide suggestions 
necessary for building a scalable solution, regardless of the tools used or the system’s functionality.

TestStand Deployment Utility
The TestStand Deployment utility simplifies the complex process of deploying a TestStand system 
by automating many of the steps involved in deployment, including collecting sequence files, 
code modules, and support files for a test system and then creating an installer for these files. 

learn more about the TestStand Deployment Utility

LabVIEW Application Builder Best Practices
labVIEW application Builder best practices make it simple to manage and organize labVIEW 
applications. These recommendations help engineers to establish guidelines and procedures 
before beginning development to ensure that their applications scale for large numbers of VIs 
and multiple developers, saving development time and energy.

Start using Application Builder best practices for labVIEW projects

©2016 National Instruments. all rights reserved. labVIEW, National Instruments, NI, ni.com, and TestStand are trademarks of National Instruments. Other product and company names listed are trademarks or 
trade names of their respective companies.

http://www.ni.com/tutorial/9923/en/
http://www.ni.com/white-paper/7197/en/
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Introduction
In a perfect world, systems would never fail. you would set them up, turn them on, let them run, 
and never think about them until you are ready to stop using them in 10, 15, or 20 or more years. 
unfortunately this is not reality, at least not yet. Systems fail and sudden, unexpected failures 
can be costly. Although you cannot completely remove the risk of failure, even with the most 
well-thought-out plans, you can reduce it. Maintenance strategies can help you to manage this 
cost and reduce the risk of failure.

A maintenance program is critical to ensure the lowest total cost of ownership across the life 
of an automated test equipment (ATE) system. A system designed for maintainability coupled 
with a sound maintenance program helps:

■■ Maximize capital investment by maintaining functionality and extending the useful life
■■ Minimize downtime costs by managing logistics, scheduling, and sparing inventory

The goal of any maintenance program is to keep the system working correctly for as long as 
possible, and get it back to working quickly if it stops. And, by the way, do this as inexpensively 
as possible. 

Concepts and Definitions
Maintenance is the activity of preforming service to keep a system functioning and repairing 
a system if it fails. Maintenance is divided into three areas: predictive maintenance, 
preventive maintenance, and corrective maintenance.

Maintainability is the ease in which maintenance can be conducted. Some industries refer to 
it as serviceability. The better the maintainability, the easier it is to control maintenance cost.

Predictive maintenance uses condition monitoring to detect a system failure before it occurs 
and is something referred to in industry as condition-based maintenance. When a potential 
failure is predicted, maintenance activities are scheduled to service a system. These activities 
can extend the useful life and avoid unplanned downtime. Predictive maintenance activities 
are normally not scheduled until the need for maintenance is detected and result in planned 
downtime, which is typically much less costly than unplanned downtime. Planned downtime 
costs can be shared across many other systems receiving maintenance. The goal is to maximize 
the capital investment by using systems/components for as long as possible before a failure and 
minimize unplanned downtime costs. With the Internet of Things moving forward at an incredible 
pace, the concept of smarter machines that can monitor themselves and communicate to a 
network of other machines when they need maintenance is becoming the norm. Technology 
advances in sensors, embedded controllers, FPgAs, networks, and Big Analog Data™ analytics 
have made predictive maintenance easier and more cost-effective than ever. A measure of 
predictive maintenance is the downtime incurred; this time is referred to as the mean predictive 
maintenance time (MPdMT).  



ni.com/automatedtest

System Maintenance3

Predictive maintenance activities include: 

■■ Condition monitoring—This ensures the system functions correctly, detects the onset of a 
failure, and identifies hidden failures in components or performance degredations that could 
lead to a system failure. With affordable embedded microprocessors and FPgA technology, 
built-in self-tests and conditioning monitoring techniques are commonly used. This is sometimes 
referred to as prognostics and health management (PHM) or system health monitoring. The 
concept is to detect performance changes and hidden failures in the system before they 
cause a much more serious system failure.   
 
Today, most cars have automated engine health monitoring that detects issues and flashes 
the check engine light, hopefully, in time to have the engine serviced before it is permanently 
damaged. A test system may monitor temperature, fan speed, memory usage, test times, 
measurement accuracy, count relay operations, and so on.  

■■ Servicing system components—This helps to slow down wear and increase the useful 
life of the system.  
 
Some car tires have sensors that check the air pressure. Improper air pressure can shorten the 
life of tires and affect gas mileage performance. If a test system is used in a dusty environment, 
it may need to clean the dust from the air filters and the inside of the enclosure so it will not 
overheat and shorten the useful life of the electronics. Monitoring the internal temperature 
or airflow of the system can inform you to when you may need to clean dust filters.   

■■ Replacing system components—Components are replaced before they fail to avoid 
unplanned downtime.   
 
A test system may use relays to switch signals for testing the device under test. Depending 
on the electrical load switched, a relay lasts for only an estimated number of operations. 
Therefore, monitoring the number of operations and replacing the relay modules before 
they fail is usually more cost-effective than waiting until a failure happens and experiencing 
an unplanned outage.  

Figure 1. See predictive maintenance uptime and downtime over time. Predictive maintenance maximizes the use of your capital 
investment and minimizes downtime costs by lowering the frequency of downtime and converting expensive unplanned downtime  
to less expensive planned downtime, but requires failure monitoring equipment and prognostics software.
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■■ Calibrating to compensate for drift—The purpose of a measurement system is to 
provide trusted measurements. If measurements are untrustworthy, then the system is 
functioning incorrectly.  
 
Most test systems contain electronics that need calibrating at some interval. If cutting-edge 
technology is used, however, the calibration interval may not be well understood, yet. 
Therefore, monitoring the measurement drift may be advised to understand when to 
properly schedule calibration maintenance.  

■■ Verifying—This ensures the system functions correctly before bringing it back online. If it 
were brought back online only to malfunction, downtime would increase.   

■■ Bringing the system back online—This must always be considered because, for some 
applications, it is not a trivial task.   
 
For example, if the test is part a manufacturing process, to bring this system back online 
may require stopping the line and resynchronizing the tester with the production flow.   

Preventive maintenance is the activity of servicing a system to prevent a system failure and 
extend useful life. Preventive maintenance activities are normally scheduled and result in planned 
downtime. Planned downtime costs can be shared across many other systems receiving 
preventive maintenance. The goal is to minimize unplanned downtime costs. A measure of 
preventive maintenance is the downtime incurred; this time is referred to as the mean preventive 
maintenance time (MPMT).  

Preventive maintenance activities include: 

■■ Servicing system components—This helps to slow down wear and increase the useful 
life of the system.   
 
This is why a car’s engine oil needs to be changed regularly. Test systems usually have complex 
software programs running in them that can have hidden resource leaks and or faults that 
eventually cause a system failure. A simple system reboot can refresh the software to a 
good-as-new state. If a test system is used in a dusty environment, it may need to clean the 
dust from the air filters and the inside of the enclosure so it will not overheat and shorten the 
useful life of the electronics. If the temperature and/or airflow cannot be monitored, then 
scheduling regular maintenance may be required. 

Figure 2. Preventive maintenance does not always maximize the use of your capital investment, but it helps to minimize downtime 
cost by avoiding expensive unplanned downtime.
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■■ Replacing system components—Components are replaced before they fail to avoid 
unplanned downtime.   
 
The tires or break pads on a car are replaced at a certain mileage to avoid a failure that may 
cause an accident or strand the driver. A test system may have connector pins to test the 
device and they tend to wear out after 100,000 connections. If 50 devices are tested per hour, 
then the connector should last about 2,000 hours or 83 days before it wears out and fails. 
Preventive maintenance should be scheduled about every 80 days to replace the connectors. 
Replacing before a failure is usually more cost-effective than waiting until a failure happens 
and experiencing an unplanned outage.  

■■ Calibrating to compensate for drift—The purpose of a measurement system is to 
provide trusted measurements. If measurements are untrustworthy, then the system is 
functioning incorrectly.  
 
Most test systems contain electronics that need calibrating at some interval.  

■■ Verifying—This ensures the system functions correctly before bringing it back online. If it 
were brought back online only to malfunction, downtime would increase.  
 

■■ Bringing the system back online—This must always be considered because, for some 
applications, it is not a trivial task.   
 
For example, if the test is part a manufacturing process, to bring this system back online 
may require stopping the line and resynchronizing the tester with the production flow.   

Corrective maintenance is the activity of repairing a failed system to restore it to a functioning 
state. Corrective maintenance activities are usually not scheduled and result in unplanned 
downtime. The goal is to maximize the capital investment by using systems/components for 
as long as possible before a failure and after a failure to minimize unplanned downtime costs. 
A measure of corrective maintenance is the downtime incurred by a failure; this time is referred 
to as the mean time to repair (MTTR).  

Figure 3. See corrective maintenance uptime and downtime over time. Corrective maintenance maximizes the use of your capital 
investment, but does not minimize the cost of downtime because it is unplanned. you can take steps to minimize the duration  
of the unplanned downtime or MTTR.
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Corrective maintenance activities include:

■■ Detecting—Detecting a system failure as soon as possible minimizes costly unplanned 
downtime and possibly prevents damage to other components of the system and/or other 
systems that are used in the same process.   
 
Pressure sensors in a car can detect a drop in oil pressure as soon as possible to alert the 
driver and prevent permanent damage to the engine. Maybe the oil pump failed or the oil 
level is low because of a leak. It is much less expensive to repair an oil pump or seal a leak 
and add more oil than buy a new engine. For ATE systems, electronics may fail that can 
affect critical measurements and cause incorrect test results. If the failure took time to 
detect, a company could unknowingly ship bad products to customers, or a cooling fan could 
fail and chassis temperature may rise to a level that damages some of the electronics.  

■■ Diagnosing and isolating—Diagnosing and isolating a failure correctly after it is detected 
can minimize unplanned downtime and save money by helping operators and maintenance 
personnel find and repair the correct component quickly.   
 
Automotive mechanics have sophisticated diagnostic equipment to help them diagnose 
problems efficiently and effectively. This saves time and money by lowering the risk of repairing 
or replacing the wrong component. The same can be said for complex ATE systems—
hours and even days can be spent diagnosing a problem without proper diagnostic tools. 

■■ Repairing—The system is repaired by repairing or replacing a failed component. The 
unplanned downtime is greatly impacted by having spares available. Depending on the 
application, environment, and skill level of personnel, having a spare system or spare 
components located nearby may or may not be cost-effective or practical.  
 
Most would not drive across the country without a spare tire in the car, but might if they 
need to drive only a few city blocks.   
 
A sparing strategy is essential to control costs. It is important to consider questions like, will 
the spares be kept on-site or in a nearby service center? Will you pay for the supplier to 
send an advanced replacement unit from the factory, or just wait until the failed unit is 
repaired and returned? The cost of unplanned downtime drives the answers. The number 
of units, the unit’s mean time between failure (MTBF), and the time it takes to replenish 
the pool of spares determines the number of spares needed. Some companies provide 
levels of sparing services to assist with estimating the number of spares needed, helping 
with logistics, and managing sparing costs. 

■■ Verifying—This ensures the system functions correctly before bringing it back online. 
Without this step, the system may still be functioning incorrectly and just cause more 
unplanned downtime.  
 
Imagine having the breaks on a car repaired, and then driving the car at high speeds on a 
freeway without first testing the breaks to verify they actually work.   

■■ Bringing the system back online—This must always be considered because, for some 
applications, it is not a trivial task. 
 
For example, if the test is part a manufacturing process, to bring this system back online 
may require stopping the line and resynchronizing the tester with the production flow. 
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Figure 4. The cost of unplanned downtime is typically much more expensive than planned downtime as shown by the comparison of 
uptime and downtime.
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Design for Maintainability
A system’s design greatly affects the ability to achieve an effective, high-quality, and controllable 
maintenance program. When designing an automated test system for higher maintainability, 
consider the following best practices and guidelines.

Self-Test and Monitoring 
Self-test and monitoring are essential for reducing downtime, planned and unplanned. Designing 
self-test and monitoring capabilities into the system from the ground up is key to having 
efficient and effective health monitoring, failure detection, failure diagnostics and isolation, 
and system verification. 

Modular Designs 
Modular designs simplify activities and reduce time associated with servicing, replacing, 
repairing, and calibrating system components. They also improve system diagnostics and 
failure isolation, saving valuable time during an unplanned outage. In addition, they reduce 
costs associated with spares. Instead of keeping several complete systems in the sparing 
pool, you can keep components, subsystems, or modules. Components usually have different 
failure rates—the components with lower failure rates need fewer spares, whereas those with 
higher rates need more.

Standardization 
Standardization can greatly reduce costs because it simplifies logistics and reduces the 
number of spares, amount of maintenance tools and equipment needed, and training costs. 

For example, some airlines employ 10 or more types of aircrafts in their fleet. Southwest 
Airlines, however, uses just one—the Boeing 737. This results in cost-savings. Mechanics 
need to be trained on and need spare parts inventory for only one type of airplane. They can 
swap out a plane at the last minute for maintenance. The fleet is totally interchangeable. All 
onboard crews and ground crews are already familiar with it. And, there are no challenges in 
how and where the planes can be stored, because they’re all the same shape and size. 

Standardization greatly helps to control the maintenance process. A well-controlled process  
is repeatable and predictable, thus designing a system with a maintenance process that can 
have only one way to complete the task is essential. If the Southwest Airlines maintenance 
crews all used different tools and conducted maintenance tasks differently, then each crew 
would produce different levels of quality and take different amounts of time to do the work, 
which makes it difficult to control and manage maintenance costs. 

Simplicity
Keep it as simple as possible to operate and maintain. In other words, make it easy to do the 
right things. This reduces the amount of documentation and training required, improves the 
consistency of the work, and decreases the time needed to conduct maintenance.
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Environment and Human Factors 
Always consider the environment and human factors. For example, if the system is used in a 
dusty environment, it may need dust filters on the air vents. How easy will it be to service the 
filters? Does the system need castors so you can move it around for maintenance? If so, make 
sure they are appropriate for the weight and terrain. What is the skill level of the operators 
and maintenance personnel and how much training do they need? Can you design hardware 
and software interfaces in a user-friendly way?

DESIgN guIDElINES PREDICTIVE PREVENTIVE CORRECTIVE

Self-Test and Monitoring
�� Condition monitoring

�� Verifying functionality
�� Verifying functionality

�� Detecting failures

�� Diagnosing and  
localizing failures

�� Verifying functionality

Modular Design

�� Condition monitoring

�� Servicing

�� Replacing

�� Calibrating

�� Verifying functionality

�� Servicing

�� Replacing

�� Calibrating

�� Verifying functionality

�� Detecting failures

�� Diagnosing and localizing 
failures

�� Repairing

�� Verifying functionality

Standardization

�� Condition monitoring

�� Servicing

�� Replacing

�� Calibrating

�� Verifying functionality

�� Improving consistency of work

�� Servicing

�� Replacing

�� Calibrating

�� Verifying functionality

�� Improving consistency of 
work

�� Detecting failures

�� Diagnosing and localizing 
failures

�� Repairing

�� Verifying functionality

�� Improving consistency of work

Simplicity

�� lowering documentation 
and training costs

�� Improving consistency of work

�� lowering documentation 
and training costs

�� Improving consistency of work

�� lowering documentation 
and training costs

�� Improving consistency of work

Environment and  
Human Factors

�� lowering frequency of 
predictive maintenance 
events and/or the MPdMT

�� Reducing human errors

�� Improving safety

�� lowering frequency of 
preventive maintenance 
events and/or the MPMT

�� Reducing human errors

�� Improving safety

�� lowering failure rates and/
or the MTTR

�� Reducing human errors

�� Improving safety

Table 1. This high-level summary shows how each design guideline benefits each maintenance approach.
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Maintenance Strategies
Which approach should you use? Predictive strategies wait until a potential future failure is 
detected and then schedule service or replacement at a convenient time. Preventive strategies 
proactively service, replace, and/or calibrate system components on a regular scheduled 
interval to minimize the risk of failure and the cost of unplanned downtime. Corrective strategies 
wait until a component fails to maximize the usage of the capital investment and repair it as 
quickly as possible to minimize the cost of unplanned downtime, or minimize the MTTR. For 
each strategy, you can do it yourself, work out a service agreement with the suppliers, or do 
nothing and hope for the best when a failure happens, which is not recommended.

Here, see a combination of techniques that help explain which maintenance strategy is best  
to use for different subsystems or components. The approaches discussed are condition 
monitoring feasibility, reliability centered maintenance (RCM), and cost of failure analysis. 
RCM is based on having an understanding of the affect of runtime on the failure rate of 
system components and the cost of component failures. The failure rate as a function of 
runtime is shown in the three graphs below. Each graph depicts  characteristics for different 
types of components. There are more  scenarios than these three, but these are common 
ones that help demonstrate how RCM works.

Figure 5 shows the failure rate increasing overtime. In this situation, the component’s failure 
rate may appear constant at first but starts to enter wear out well before the intended service 
life of the system. In other words, the useful life of the component is significantly shorter than 
the length of time the system will be in service. This is probably the most intuitive scenario 
because mechanical components like fans, connectors, electromechanical relays, solid-state 
hard drives, batteries, the calibration of electronics, and so on have this trend. After each 
preventive maintenance event, the failure rate is lowered back to a “good-as-new” level, thus 
restoring the reliability of the system.

Figure 5. Preventive maintenance lowers the failure rate back to a “good-as-new” level at each maintenance event when the failure 
rate is increasing.
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Figure 6 shows the failure rate remaining constant over time, sometimes called the steady-state 
failure rate. In this situation the component should not start to wear until well past the intended 
service life of the system (this does not include calibration). In other words, the useful life of 
the component extends well beyond the length of time the system will be in service. This is a 
typical scenario for electronic components such as ICs, resistors, ceramic capacitors, diodes, 
inductors, and so on that are in useful life. Modern electronics typically have a useful life well 
beyond 10 to 15 years. For all practical purposes, they do not wear out before the test system 
is obsoleted. 

After each predictive maintenance event, the failure rate is not changed, so there is no benefit 
to replacing a component before it fails. Mathematically, this failure rate is treated as a “random 
chance”.  Therefore, replacing an older functioning component with a new component does not 
improve the system reliability. 

Figure 7 shows the failure rate decreasing over time. This is probably the least intuitive scenario, 
but software and complex computer systems can exhibit this characteristic. Performing major 
upgrades to software and firmware or adding new features, new technology, and so on can 
introduce defects (bugs) that increase the probability of a system failure. After each preventive 
maintenance event, the failure rate is raised to a higher level, thus decreasing the system 
reliability. However, situations arise where you must upgrade software, such as OS updates 
or hardware obsolescence.

Figure 6. Preventive maintenance has little to no effect on the failure rate at each maintenance event when the failure rate remains 
constant over time.
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Figure 7.  The failure rate decreases over time and the preventive maintenance actually raises the failure rate at each maintenance event.
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In addition, there are situations when there is insufficient data to know whether the failure rate 
is increasing, constant, or decreasing over time. This may be the situation for new products, 
technologies, or designs. using a predictive maintenance strategy of monitoring for failures 
over time can provide good insight into what the situation for a component might be if the cost 
of monitoring is effective compared to the cost of a failure. Even if a trend is not established, a 
predictive strategy usually maximizes your capital investment and minimizes downtime costs.

When using this approach to develop a maintenance strategy for a complete system, you can 
break down the system into subsystems and/or components, and then evaluate each component 
to see which maintenance strategy is best. The following are some good guidelines to work with:

■■ Can the onset of a component failure be detected before it causes a system failure?
■■ Is it cost-effective to implement condition monitoring for this component failure, considering 

the cost of failure of a corrective maintenance event and the extra planned downtime from 
a predictive maintenance event?

■■ Is the failure rate of this component increasing, continuous, or decreasing over time or do 
you know?

■■ Is the failure critical and the cost of a failure high?

 
The diagram below shows a decision flow chart to help you choose the best strategy for each 
component and failure mode of the system. The flow chart, however, should not override good 
human judgment.

Figure 8. Maintenance Strategy Decision Flow Chart
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Example ATE System
An ATE system based on PXI Express is made up of basic components or subsystems that 
can each be broken down into smaller components for a maintenance strategy of their own.

Chassis
The chassis backplane can be challenging to monitor for potential failures. It has a constant 
failure rate and should have a service life of 10 to15 or more years. The electronics are basically  
all digital and do not require calibration. A corrective maintenance strategy or a “run to failure” 
is the best approach.

The chassis power supply in this example does not provide monitoring capabilities. Power supplies 
typically use larger liquid filled capacitors and some may have their own cooling fans. These 
components have a typical service life of around seven to 10 years, depending on load and 
environmental conditions. A predictive or preventive maintenance strategy is a good approach. 

The chassis fan speed and the chassis temperature can be monitored. If the speed starts to slow 
down or, if the chassis temp starts to increase, a warning can be sent and maintenance can be 
scheduled at a convenient time in the near future. A predictive maintenance strategy works well.

Controller
The controller’s integrated circuits and electronic components (excluding hard disk and RAM) 
may provide tools to monitor for potential failures. For this example, it would require a lot of 
development time to implement these features and not be cost-effective. It also has a constant 
failure rate and should have a typical service life of 10 to 15 or more years. The electronics are 
basically all digital and do not require calibration. A corrective maintenance strategy or a “run 
to failure” is often the best approach.

The controller’s RAM has an error correction code (ECC) that automatically runs and the amount 
of errors that are found and corrected can be monitored. If the frequency of these errors continue 
to increase, time to replace the RAM may need to be scheduled. RAM does not require calibration. 
A predictive maintenance strategy is the best approach.

The controller’s hard drive in this example is a solid-state hard drive (SSD) that monitors the 
number of reads and writes. SSDs have only a certain number of reads and writes before they 
wear out. Thus, as the number of reads and writes approach the wear out numbers, the SSD 
should be scheduled for replacement. SSDs do not require calibration. A predictive maintenance 
strategy is the best approach.
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Software has some unique characteristics—it does not wear out and is unaffected by the 
environment. It fails only because of design defects or bugs. Resource leaks, like memory 
usage and fragmentation, can be monitored; however, many faults cannot be seen before the 
crash. The wonderful aspect about software is that because it does not wear out, a simple 
reboot of the system is like starting fresh and good as new. This fixes everything until the bug 
raises its ugly head again. Therefore, a preventive maintenance strategy of rebooting the 
software once a week or once a month may solve many problems. A more challenging aspect 
to software reliability is upgrading. Software requires upgrades occasionally as new features 
are required, compatibility with other software packages is required, or perhaps a patch to 
fix a bug is needed. The challenge is that every time you introduce new software, it changes 
the ecosystem and may introduce more bugs. you don’t know until you try. This dynamic 
makes the risk of failure for software go up immediately after a software upgrade, and then 
settle down after some runtime. The upgrade maintenance approach most commonly used for 
software is to delay an upgrade until it is necessary.

Instrument Modules
The integrated circuits on instrumentation modules can be challenging to monitor for potential 
failures. They have a constant failure rate and should have a service life of 20 or more years. 
The analog electronics can drift over time, thus they require calibration. A preventive maintenance 
strategy to address calibration is required to address drift. Many calibration labs can run a final 
verification test on the module after calibration to prove all is well. This test does a good job 
catching other electronic components that have failed or are failing. But no test is perfect and 
a corrective maintenance strategy or a run-to-failure approach may be best for some of the 
other failure modes of the electronics. There, a combination strategy is the best approach.

Switch Module
The switch module’s base board is primarily made up of integrated circuits that usually do not 
have tools to monitor the health of the electronics. They have a constant failure rate and should 
have a typical service life of 10 to 15 or more years. The electronics are basically all digital and do 
not require calibration. A corrective maintenance strategy or a run-to-failure approach is best.

The switches’ electromechanical relays have tools that monitor the number of operations. Relays 
have only a certain number of operations before they wear out, depending on the electrical 
load that is switched. you can estimate the number of switches by using data and formulas 
that the manufacturer provides. Thus, as the number of operations approaches the wear out 
numbers, the switch module should be scheduled for replacement. Switch modules do not 
require calibration. A predictive maintenance strategy is the best approach.
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Cables
Fixed cables are basically connected and never disconnected, or reconnected so infrequently 
that it does not matter. Fixed cables hardly ever fail except form vibration or human abuse. The 
failure rate is constant and very low. A corrective maintenance strategy is the best approach.

Dynamic cables are connected and disconnected frequently and wear out after a certain 
number of reconnects. The failure rate is increasing over time and detecting a potential failure 
may not be easy, but it may be estimated. The number of reconnects may be understood by 
the manufacturer and is worth asking about. If the average number of reconnects is known 
and you know how many reconnects there will be per hour, per day, per unit, and so on, then 
you can schedule preventive maintenance. A preventive maintenance strategy is the best approach.

Conclusion
Each predictive, preventive, and corrective approach has its benefits, challenges, and appropriate 
situation. In most situations, the greatest expense associated with maintenance is the cost  
of unplanned downtime (the cost of a failure). Converting unplanned downtime to planned 
downtime through the use of condition monitoring and prognostics is usually advantageous.  

Every year, condition monitoring equipment, networks, servers, and Big Analog Data™ analytics 
continue to decrease in cost and increase in performance, thus industry is trending toward smarter 
equipment and more predictive maintenance. For the situations when unplanned downtime is 
unavoidable, a good sparing and repair strategy is key to minimizing and managing maintenance cost.

A system designed for maintainability from the ground up coupled with good maintenance 
strategies will help you manage costs and reduce the risk of failures that lead to expensive 
unplanned downtime. This lowers the cost of maintenance, which lowers the total cost of 
ownership. Self-tests, modular designs, standardization, simplicity, and environmental/human 
factors are fundamental building blocks when designing for maintainability.

SuBCOMPONENT PREDICTIVE PREVENTIVE CORRECTIVE

Chassis Backplane — — √

Chassis Power Supply — √ —

Chassis Fans √ — —

Controller Mother Board — — √

Controller RAM √ — —

Controller Solid-State Drive √ — —

Controller Software — √ —

Instrument Module — Calibrate √

Switch Module Base Board — — √

Switch Module Relays √ — —

Fixed Cables — — √

Dynamic Cables — √ —

Table 2. you could use this maintenance strategy for each major component of an ATE example based on PXI Express. Note that the 
best strategy for each component is dependent on the unique situation for your application.
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Appendix: Cost of Maintenance
Many companies base purchasing decisions for test equipment primarily on the price and do 
not consider the cost of deploying, operating, and maintaining the equipment. And they even 
less frequently consider the cost of equipment downtime. The cost of downtime (or failures) 
and maintenance over the service life of a test system can be much greater than the purchase 
price, frequently reaching two to three times more. The largest culprit is the cost of downtime 
or a failure. This is why maintenance programs exist and the maintainability of a system is 
becoming more important every day.

This appendix provides a straightforward total cost of maintenance (TCM) model that can be 
used to estimate the potential downtime and maintenance costs of a system over its service 
life. Calculating the TCM of a test system can become very tedious and complex quickly. This 
model provides a sufficient estimate at a level of complexity and detail that is adequate and 
manageable for most applications. 

Total Cost of Maintenance (TCM)

TCM = CD + M

CD = Cost of Unplanned and Planned Downtime 

M = Cost of Maintenance

you can measure a maintenance program’s return on investment (ROI) by comparing maintenance 
dollars (M) invested to the reduction in downtime dollars (CD) spent over the service life of the 
system or to the overall reduction of TCM dollars over the service life of the system. Some 
companies combine the cost of planned downtime with the cost of maintenance and compare 
this only to the cost of unplanned downtime, because their main focus is to avoid unplanned 
downtime and failures. Each company may have its own way to estimate TCM and the ROI of 
maintenance, depending the metrics a company would like to track.



ni.com/automatedtest

System Maintenance17

Cost of Downtime (CD)
Downtime costs can sometimes seem like “funny” money because some companies find them 
difficult to estimate. But the cost of downtime is very real. There are two types of downtime: 
planned (scheduled) and unplanned (unscheduled). The goal of a maintenance program is to 
minimize all downtime and convert as much unplanned downtime to planned downtime as 
financially feasible.

unplanned downtime is always the most expensive, because it takes place when you need the 
equipment. It is never at a good time and can result in lost revenue from loss of production, 
product loss, collateral damage to other equipment, labor loss (the labor force may have to 
“‘sit’ around and” wait for the system to be repaired), and other logistical costs that are situation 
dependent. Some manufacturing companies estimate their cost of unplanned downtime to be 
around $8,000 per hour. Petrochemical, power, and transportation companies often estimate 
much higher cost per hour. This cost is different for various products, situations, companies, 
and industries. Time is money; this is why corrective maintenance plans with sparing strategies 
are put in place to minimize the mean time to repair (MTTR) of a failed system.

Planned downtime is costly as well, but less expensive than unplanned downtime because it is 
scheduled for times that will have the least impact on production, minimizes product loss, 
minimizes the risk of collateral damage to other equipment, results in no labor loss, and minimizes 
the cost of logistics (trained people, tools, and parts are on-site and ready to perform the 
maintenance). Planned downtime can be shorter than an unplanned outage and is shared across 
many other systems that need maintenance. Because unplanned downtime is usually much 
more expensive than planned, many companies put into place predictive and preventive 
maintenance plans.

CD = UD + PD

UD = Cost of Unplanned Downtime 

PD = Cost of Planned Downtime 

UD = λ x MTTR x TU x Cost per Hour 

 λ = Steady-State Failure Rate (failures per hour)
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The steady-state failure rate of the system is the failure rate that is expected during the system’s 
service life or it’s useful life. This is the phase of life between early life (system burn in) and the 
wear-out phase of life when the system failure rate is expected to significantly increase and the 
system should be retired. During the service life phase of the system when the failure rate is 
considered to be steady state, this mathematical relationship can be used.

MTBFSystem = Mean Time Between Failure of the System (hours) 

TU = Total Amount of Run Time of the System During the Service Life (hours)

Run time for electronics usually includes the time that the system is powered on while doing 
its job and in an idle state.  

MTTR = Mean Time to Repair (hours)

 
MTTR is not just the time to repair or replace a failed component. It includes the:
■■ Time to detect a failure
■■ Time to diagnose the system and understand which system component(s) failed
■■ Time to access and repair or replace the failed component(s) (having spares and/or 

redundancy will greatly impact this)
■■ Time to verify the system is repaired correctly
■■ Time to bring the system back online

 
It is easy to see that MTTR is very dependent on having spares, the system location, the design, 
and the type of failures that typically occur. 

λi = Failure Rate for the ith Failure Mode 

ti = Time to Repair the System After the ith Failure Mode Occurred 

The failure mode is defined as the type of failure that occurred or the root cause of the failure.

PD = ( λ x MPdMT + fPM x MPMT) x TU x Planned Downtime Cost per Hour

1

MTBFSystem

λ =

∑(λi ti)

∑ λi

MTTR =
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The frequency that predictive maintenance should occur should correlate the to failure rate of 
the system. Instead of performing maintenance after a failure has occurred, maintenance is 
performed at a planned time after a potential failure condition is detected but before the 
failure occurs.

MPdMT = Mean Predictive Maintenance Time (hours)

 
MPdMT includes the:
■■ Time to access
■■ Time to service and or replace component(s) (having spares and/or redundancy will greatly 

impact this)
■■ Time to verify the system is operating correctly
■■ Time to bring the system back online

λi = Frequency of the ith Predictive Maintenance Activity 

ti = Time to Conduct the ith Predictive Maintenance Activity on the System 

fPM = Frequency of Preventive Maintenance (per hour)

 
MPMT = Mean Preventive Maintenance Time (hours)

 
MPMT includes the:
■■ Time to access
■■ Time to service, replace, and/or calibrate component(s) (having spares and/or redundancy 

will greatly impact this)
■■ Time to verify the system is operating correctly
■■ Time to bring the system back online

fi = Frequency of the ith Preventive Maintenance Activity 

ti = Time to Conduct the ith Preventive Maintenance Activity on the System

∑(fi ti)

∑ fi

MPMT =

∑(λi ti)

∑ λi

MPdMT =   
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Cost of Maintenance (M)

M = PdM + PM + CM
 

PdM = Cost of Predictive Maintenance
PM = Cost of Preventive Maintenance
CM = Cost of Corrective Maintenance

Cost of Predictive Maintenance (PdM)

PdM = λ x TU  x PdM Event + Cost of Tools

PdM Event = Average Cost of a PdM Event

PdM Event = (MPdMT x Planned Downtime Labor Cost per Hour) + 

Service or Replacement + Spares + Logistic Cost

Planned downtime labor cost includes the cost of labor to perform predictive or preventive 
maintence for a system and the cost of training the labor force estimated on a per hour basis.  

Cost of Tools = Cost of Software and Hardware Tools Needed for PdM

 
The cost of tools is typically a one-time expense that includes the cost of:
■■ Condition monitoring hardware and software
■■ Tools to remove and replace components
■■ Verification test equipment and software (which could be the same used for  

corrective maintenance)
■■ Maintenance of the equipment and software

 
NOTE: The tools can often be used for predictive, preventive, and corrective maintenance. If the tools can be used, then the cost  
of tools needs to be accounted for only one time and not for all three types of maintenance.

As shown above, MPdMT is greatly affected by having the right equipment/tools available 
and well-trained personnel.
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Cost of Preventive Maintenance (PM) 

 

PM = fPM x TU x PM Event + Cost of Tools

fPM = Frequency of Preventive Maintenance (per hour) 

PM Event = Average Cost of a PM Event 

PM Event = (MPMT x Planned Downtime Labor Cost per Hour) + 

Calibration, Service or Replacement + Spares + Logistic Cost

The smaller the MPMT of a system is, the lower the cost of predictive maintenance. As shown 
above, MPMT is greatly affected by having the right equipment/tools available, well-trained 
personnel, and a good calibration strategy. Many system suppliers can offer calibration options. 
Depending on the situation, it may be more cost-effective to have on-site calibration services 
or purchase a calibration service agreement from the system supplier. A standard supplier 
calibration program may be sufficient. 

Cost of Corrective Maintenance (CM) 

 

CM = λ x TU x CM Event + Cost of Tools

CM Event = Average Cost of a CM Event 

CM Event = (MTTR x Unplanned Downtime Labor Cost per Hour) +  

Repair or Replacement + Spares + Logistic Cost

unplanned downtime labor cost includes the cost of labor to repair a system and the cost of 
training the labor force estimated on a per hour basis.

The smaller the MTTR of a system is, the greater the system availability and the lower the cost of 
unplanned downtime. As shown above, MTTR is greatly affected by location, the system design, 
having the right equipment/tools available, well-trained personnel, and a good sparing strategy. 
Many system suppliers can offer sparing options. Depending on the situation, it may be more 
cost-effective to own spares or purchase a service agreement from the system supplier to provide 
spares or have some hybrid agreement of the two. If the cost of unplanned downtime is low enough, 
on-site spares may not be justified and relying on standard supplier repair times may be sufficient.
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