Sticky tape for ultrathin LEDs and solar cells


Tuesday, 21 July, 2015


Sticky tape for ultrathin LEDs and solar cells

Australian National University (ANU) scientists studying thin layers of phosphorus have found surprising properties that could open the door to ultrathin and ultralight solar cells and LEDs.

The team used sticky tape to create atom-thick layers, termed phosphorene, in the same simple way as the Nobel Prize-winning discovery of graphene. Unlike graphene, phosphorene is a semiconductor, like silicon, which is the basis of current electronics technology.

“Because phosphorene is so thin and light, it creates possibilities for making lots of interesting devices, such as LEDs or solar cells,” said lead researcher Dr Yuerui (Larry) Lu. “It shows very promising light-emission properties.”

The team created phosphorene by repeatedly using sticky tape to peel thinner and thinner layers of crystals from the black crystalline form of phosphorus. 

As well as creating much thinner and lighter semiconductors than silicon, phosphorene has light-emission properties that vary widely with the thickness of the layers, which enables much more flexibility for manufacturing.

“This property has never been reported before in any other material,” said Dr Lu, from ANU College of Engineering and Computer Science, whose study is published in the journal Light: Science and Applications.

“By changing the number of layers we can tightly control the band gap, which determines the material’s properties, such as the colour of LED it would make.

“You can see quite clearly under the microscope the different colours of the sample, which tells you how many layers are there,” said Dr Lu.

Dr Lu’s team found the optical gap for monolayer phosphorene was 1.75 eV, corresponding to red light of a wavelength of 700 nm. As more layers were added, the optical gap decreased. For instance, for five layers, the optical gap value was 0.8 eV — an infrared wavelength of 1550 nm. For very thick layers, the value was around 0.3 eV — a mid-infrared wavelength of around 3.5 µm. 

The behaviour of phosphorene in thin layers is superior to silicon, said Dr Lu.

“Phosphorene’s surface states are minimised, unlike silicon, whose surface states are serious and prevent it being used in such a thin state.”

 

Image caption: Shuang Zhang making phosphorene. Image credit: Stuart Hay, ANU. 

Related Articles

Eco-friendly battery for low-income countries

Able to be used more than 8000 times, this battery has an energy density that is comparable to...

Novel material improves stability, efficiency of PSCs

A team of chemists has developed a new material for perovskite solar cells that can be used as a...

Device gathers, stores electricity in remote settings

New research shows the pyroelectrochemical cell, or PEC, harnesses changes in ambient temperature...


  • All content Copyright © 2024 Westwick-Farrow Pty Ltd