Creating custom-coloured light with 2D semiconductors

Friday, 28 February, 2020

Creating custom-coloured light with 2D semiconductors

Swiss and UK researchers have discovered structures based on two-dimensional materials that emit tailor-made light in any colour you could wish for.

Finding new semiconductor materials that emit light is essential for developing a wide range of electronic devices. But making artificial structures that emit light tailored to our specific needs is an even more attractive proposition. However, light emission in a semiconductor only occurs when certain conditions are met.

Researchers from the University of Geneva (UNIGE), in collaboration with The University of Manchester, have now discovered an entire class of 2D materials that are the thickness of one or a few atoms. When combined together, these atomically thin crystals are capable of forming structures that emit customisable light in the desired colour. Their research has been published in the journal Nature Materials.

Semiconductor materials capable of emitting light are used in sectors as diverse as telecommunications, light-emitting devices (LEDs) and medical diagnostics. Light emission occurs when an electron jumps inside the semiconductor from a higher energy level to a lower level. It is the difference in energy that determines the colour of the emitted light. For light to be produced, the velocity of the electron before and after the jump must be exactly the same, a condition that depends on the specific semiconducting material considered. Only some semiconductors can be used for light emission: for example, silicon — used to make computers — cannot be employed for manufacturing LEDs.

“We asked ourselves whether two-dimensional materials could be used to make structures that emit light with the desired colour,” said Professor Alberto Morpurgo from UNIGE.

2D materials are perfect crystals which, like graphene, are one or a few atoms thick. Thanks to recent technical advances, different 2D materials can be stacked on top of each other to form artificial structures that behave like semiconductors. The advantage of these ‘artificial semiconductors’ is that the energy levels can be controlled by selecting the chemical composition and thickness of the materials that make up the structure.

“Artificial semiconductors of this kind were made for the first time only two or three years ago,” said Nicolas Ubrig, a researcher in the team led by Prof Morpurgo. “When the two-dimensional materials have exactly the same structure and their crystals are perfectly aligned, this type of artificial semiconductor can emit light. But it’s very rare.”

These conditions are so strict that they leave little freedom to control the light emitted. As explained by Prof Morpurgo, “Our objective was to manage to combine different two-dimensional materials to emit light while being free from all constraints.”

The physicists thought that, if they could find a class of materials where the velocity of the electrons before and after the change in energy level was zero, it would be an ideal scenario which would always meet the conditions for light emission, regardless of the details of the crystal lattices and their relative orientation. A large number of known 2D semiconductors have a zero-electron velocity in the relevant energy levels. Thanks to this diversity of compounds, many different materials can be combined, and each combination is a new artificial semiconductor emitting light of a specific colour.

“Once we had the idea, it was easy to find the materials to use to implement it,” said Professor Vladimir Fal’ko from The University of Manchester. Materials that were used in the research included various transition metal dichalcogenides (such as MoS2, MoSe2 and WS2) and InSe; other possible materials have been identified and will be useful for widening the range of colours of the light emitted by these new artificial semiconductors.

“The great advantage of these 2D materials, thanks to the fact that there are no more preconditions for the emission of light, is that they provide new strategies for manipulating the light as we see fit, with the energy and colour that we want to have,” Ubrig said. This means it is possible to devise future applications on an industrial level, since the emitted light is robust and there is no longer any need to worry about the alignment of atoms.

Image caption: Artistic view of a junction of different 2D light-emitting materials. Image ©Xavier Ravinet.

Please follow us and share on Twitter and Facebook. You can also subscribe for FREE to our weekly newsletter and bimonthly magazine.

Related Articles

Japan's Fugaku named world's fastest supercomputer

Fugaku has taken out the top spot on the TOP500 list — a ranking of the world's fastest...

Selecting the right industrial joystick for your application

Costing aside, choosing the right industrial joystick when such requirement is called for can be...

World's fastest internet speed recorded, researchers claim

Australian researchers have successfully tested and recorded what is claimed to be the...

  • All content Copyright © 2020 Westwick-Farrow Pty Ltd