Quantum network paves way for safer online communication


Monday, 07 September, 2020



Quantum network paves way for safer online communication

The world is one step closer to having a totally secure internet and a solution to the growing problem of cyber attacks, thanks to the creation of a quantum network by an international team of scientists.

By harnessing the laws of physics, the invention can make messages completely safe from interception while also overcoming major challenges which have previously limited advances in this little-used but much-hyped technology. Its creation was led by the University of Bristol and has been described in the journal Science Advances.

The current internet relies on complex codes to protect information, but hackers are increasingly adept at outsmarting such systems, leading to cyber attacks which cause major privacy breaches and fraud running into trillions of dollars annually. With such costs projected to rise dramatically, the case for finding an alternative is compelling — and quantum has for decades been hailed as the revolutionary replacement to standard encryption techniques.

So far physicists have developed a form of secure encryption, known as quantum key distribution, in which particles of light, called photons, are transmitted. The process allows two parties to share, without risk of interception, a secret key used to encrypt and decrypt information. But to date this technique has only been effective between two users.

“Until now, efforts to expand the network have involved vast infrastructure and a system which requires the creation of another transmitter and receiver for every additional user,” said Dr Siddarth Joshi, who headed the new project at the University of Bristol’s Quantum Engineering Technology (QET) Labs. “Sharing messages in this way, known as trusted nodes, is just not good enough because it uses so much extra hardware which could leak and would no longer be totally secure.”

The international team’s quantum technique applies a principle called entanglement, which Albert Einstein described as “spooky action at a distance”. It exploits the power of two different particles placed in separate locations, potentially thousands of kilometres apart, to simultaneously mimic each other. This process is said to present far greater opportunities for quantum computers, sensors and information processing.

“Instead of having to replicate the whole communication system, this latest methodology, called multiplexing, splits the light particles, emitted by a single system, so they can be received by multiple users efficiently,” Dr Joshi said.

Artistic depiction of the quantum network. Image credit: Anta Bucevic, visual designer.

The team created a network for eight users using just eight receiver boxes, whereas the former method would need the number of users multiplied many times — in this case, amounting to 56 boxes. As the user numbers grow, the logistics become increasingly unviable — for instance, 100 users would take 9900 receiver boxes.

To demonstrate its functionality across distance, the receiver boxes were connected to optical fibres via different locations across Bristol and the ability to transmit messages via quantum communication was tested using the city’s existing optical fibre network.

“Besides being completely secure, the beauty of this new technique is its streamline agility, which requires minimal hardware because it integrates with existing technology,” Dr Joshi said. The system also features traffic management, delivering better network control which allows, for instance, certain users to be prioritised with a faster connection.

The researchers created a scheme where every user only has a single glass fibre connected to a source of quantum entanglement. Image ©IQOQI-Vienna (ÖAW)/Mateusz Kotyrba.

Whereas previous quantum systems have taken years to build, at a cost of millions or even billions of pounds, this network was created within months for less than £300,000. The financial advantages grow as the network expands, so while 100 users on previous quantum systems might cost in the region of £5 billion, Dr Joshi believes multiplexing technology could slash that to around £4.5 million, further expanding the potential applications.

“With these economies of scale, the prospect of a quantum internet for universal usage is much less far-fetched,” Dr Joshi said. “We have proved the concept and, by further refining our multiplexing methods to optimise and share resources in the network, we could be looking at serving not just hundreds or thousands, but potentially millions of users in the not-too-distant future.

“Until now, building a quantum network has entailed huge cost, time and resource, as well as often compromising on its security — which defeats the whole purpose.

“Our solution is scalable, relatively cheap and, most important of all, impregnable. That means it’s an exciting game changer and paves the way for much more rapid development and widespread rollout of this technology.”

Top image caption: The network is powered by this central source. Image ©ÖAW/Klaus Pichler.

Please follow us and share on Twitter and Facebook. You can also subscribe for FREE to our weekly newsletter and bimonthly magazine.

Related Articles

A new generation of embedded processors

It's a new era for high-end embedded processors that are now available on two...

Organic field-effect transistors successfully miniaturised

Engineers have developed a monolayer organic semiconductor layer for organic field-effect...

Electrically driven 'topological' laser developed

The electrically driven 'topological' laser has the ability to route light particles...


  • All content Copyright © 2020 Westwick-Farrow Pty Ltd