Analysing semiconductor crystals with a sphere of light


Wednesday, 19 June, 2019


Analysing semiconductor crystals with a sphere of light

Japanese researchers have used a hollow sphere to measure the electronic and optical properties of large semiconducting crystals — an approach that improves on current photoluminescence spectroscopy techniques and could lead to energy savings for mass producers, and thus consumers, of power devices.

Semiconducting crystals are used to make electronic devices like microprocessor chips and transistors, but manufacturers need to be able to detect crystal defects and test their energy conversion efficiency. One way to do this is to measure their ‘internal quantum efficiency’, or their ability to generate photons from electrons excited by an electric current or an excitation laser. Currently available methods limit the sample size that can be tested at a time.

Now, advanced materials scientist Kazunobu Kojima of Tohoku University and colleagues have devised a modified approach to photoluminescence spectroscopy that can test larger samples. Their work has been published in the journal Applied Physics Express.

Standard photoluminescence spectroscopy detects the relative amount of light emitted by a semiconductor crystal when an excitation laser is shone on it. Light energy is lost through these excitation and emission processes, so scientists have been experimenting with photoluminescence spectroscopy that uses an ‘integrating sphere’ to minimise the loss of photons, the elementary particles of light.

Integrating spheres collect both the excitation light and the light emitted from a sample lying inside it, where the light is diffusively reflected inside until it becomes uniformly dispersed. The uniform distribution of light improves the accuracy and repeatability of internal quantum efficiency testing. But this means that the size of the crystal being tested is ultimately limited by the size of the sphere.

Kojima and colleagues found they could still test the internal quantum efficiency of a crystal when it was placed directly outside the sphere, allowing larger samples to be used. They conducted their tests on a semiconducting crystal called gallium nitride, which is commonly used in LEDs and is expected to be used in electronic devices because of its superior properties.

“This ‘omnidirectional photoluminescence’ spectroscopy can be used to evaluate the quality of large-sized crystals or semiconductor wafers, which are essential for the mass production of power devices,” said Kojima, who added that this could lead to energy saving and reduce production costs.

Image credit: ©Rozaliya/Dollar Photo Club

Please follow us and share on Twitter and Facebook. You can also subscribe for FREE to our weekly newsletter and bimonthly magazine.

Related News

Shape-changing electronics for wearable applications

A research team has developed a multifunctional electronic platform that can mechanically...

Dietary fibre purifies carbon nanotubes

The method could be upscaled for manufacturing purified batches of single-wall carbon nanotubes...

Instabilities found on common semiconductor material

It turns out that the surface of a commonly used compound semiconductor material — gallium...


  • All content Copyright © 2019 Westwick-Farrow Pty Ltd