Atom-thin nanowires efficiently convert heat to electricity

Tuesday, 12 June, 2018

Atom-thin nanowires efficiently convert heat to electricity

Waste heat can now be converted to electricity more efficiently using one-dimensional nanoscale materials as thin as an atom, thanks to new research led by the University of Warwick and published in the journal ACS Nano.

Collaborating with the Universities of Cambridge and Birmingham, researchers from Warwick’s Department of Physics found that the most effective thermoelectric materials can be realised by shaping them into the thinnest possible nanowires. Thermoelectric materials harvest waste heat and convert it into electricity — and are much sought after as renewable and environmentally friendly sources of energy.

“In contrast to three-dimensional material, isolated nanowires conduct less heat and more electricity at the same time,” said Dr Andrij Vasylenko, first author on the paper from the University of Warwick. “These unique properties yield unprecedented efficiency of heat-to-electricity conversion in one-dimensional materials.”

Diagram showing one-dimensional nanowires converting waste heat to electricity. Image credit: University of Warwick. For a larger version, click here.

The researchers were investigating the crystallisation of tin telluride in extremely narrow carbon nanotubes used as templates for the formation of these materials in their lowest dimensional form. In a combined theoretical-experimental research, they were able not only to establish a direct dependence between the size of a template and a resulting structure of a nanowire, but also to demonstrate how this technique can be used for regulation of the thermoelectric efficiency of tin telluride formed into nanowires 1–2 atoms in diameter.

“This opens up an opportunity for creation of a new generation of thermoelectric generators, but also for exploration of alternative candidate materials for thermoelectrics among abundant and non-toxic chemical elements,” said Dr Vasylenko. And with a growing demand for both miniaturisation and enhanced efficiency of thermoelectrics, nanostructuring offers a viable route for targeting both objectives.

Top image credit: ©

Related News

Stacking 2D materials changes their properties

When two atomically thin materials like graphene are stacked on top of each other, their...

New forum answers your questions on antenna integration

Antenova has introduced an online forum where product designers can consult with industry experts...

High-performance n-type transistor developed

The unipolar n-type transistor has a high electron mobility performance of up to 7.16...

  • All content Copyright © 2019 Westwick-Farrow Pty Ltd