Efficient, heavy-atom-free OLEDs developed

Tuesday, 26 January, 2021

Efficient, heavy-atom-free OLEDs developed

An international research team has managed to design organic light-emitting diodes (OLEDs) that are free of rare heavy atoms, by merging the features of two alternative emitter materials to create their own. Their breakthrough has been published in the journal ACS Applied Materials & Interfaces.

OLEDs are ideal materials for smartphone and television displays, with advantages including low cost, light weight, flexibility and ease of modification. However, current OLEDs that achieve commercially viable quantum efficiencies contain rare metal atoms such as iridium and platinum that increase costs and reduce sustainability. OLEDs that do not contain heavy atoms (such as rare metals and halogens) could reduce costs and improve the long-term viability of products, but the heavy-atom-free emitters that are currently available have limitations.

Materials known as thermally activated delayed fluorescence (TADF) emitters are efficient; however, they typically have broad emission spectra that make them more suitable for use as light sources than as the precise emitters required for display applications. Another type of heavy-atom-free emitter is room-temperature phosphorescence (RTP) emitters; however, the OLEDs using them show very low efficiencies of <1%, due to the quenching of long-lived triplet excitons in the device.

The researchers therefore merged the mechanisms of TADF and RTP phenomena to produce a hybrid emitter that combines features of both systems. Their TADF/RTP material — called SiAz — contains only carbon, hydrogen, nitrogen and silicon atoms, which are easy-to-obtain, naturally abundant elements, making SiAz viable for widespread use.

“The energy-level gaps in the excited states of an emitting material determine how the materials can behave upon the excitation and the emission they produce,” said Osaka University’s Youhei Takeda, corresponding author on the study. “Combining the two mechanisms meant that we could alter the way an excitonic molecule undergoes transition between the spin and energetically different states to produce the overall characteristics that we wanted. Specifically, by tuning energy levels, our material can utilise thermal upconversion system to produce RTP.”

The researchers achieved a high degree of control over the energy levels through careful selection of the host material that the emitter molecule was impregnated into — which allowed thermally activated transition of the energetically lowest triplet excited state to the higher triplet state of the emitter molecules to irradiate pure RTP in an efficient way. The SiAz material was successfully used in a device that achieved an external quantum efficiency of 4%, which is the best reported to date for a heavy-atom-free OLED based on RTP.

“We hope that further efforts to understand the structure–property relationships of these hybrid systems will allow us to identify clear design principles going forward,” Takeda said. “Application of the control we have demonstrated is expected to lead to the widespread availability of heavy-atom-free OLED products and high-resolution bio-imaging agents that are sustainable and cost-effective.”

Image credit: ©stock.adobe.com/au/Сake78 (3D & photo)

Please follow us and share on Twitter and Facebook. You can also subscribe for FREE to our weekly newsletters and bimonthly magazine.

Related News

Low levels of backscattering confirmed in hollow-core fibres

Researchers have successfully measured back-reflection in cutting-edge hollow-core fibres that is...

Flexible crystal enables efficient, bendable electronics

When an electric field is applied, the hybrid material can be strained up to 22% — the...

Ferroelectric memory with ultralow power and high speed

A new ferroelectric memory surpasses the performance of a conventional flash memory in terms of...

  • All content Copyright © 2021 Westwick-Farrow Pty Ltd