Molecular electronic devices closer to reality

Tuesday, 04 November, 2003

Researchers at Northwestern University, led by Mark Hersam, assistant professor of materials science and engineering, have become the first to measure a unique and versatile nanoelectric effect - called resonant tunnelling - through individual molecules mounted directly on silicon.

The findings were published online Nov. 1 by Nano Letters, a publication of the American Chemical Society. The article will appear on the cover of the journal's January 2004 issue. "This work represents the first experimental realisation of a molecular resonant tunnelling device on a semiconductor," said Hersam. "The device works at room temperature and on silicon, which are important features that suggest that it can be made compatible with conventional silicon microelectronics. It's easier to make inroads if you complement current technology rather than replace it."

Silicon microelectronics has undergone relentless miniaturisation during the past 30 years leading to dramatic improvements in computational capacity and speed. At the most fundamental limit, individual molecules have been envisaged as functional electronic devices. When interfaced with conventional circuitry, resonant tunnelling devices allow improved efficiency and reduced power consumption in computer architectures.

Resonant tunnelling also may allow individual molecules to be detected and identified, thus creating future opportunities for high sensitivity sensors.

Related News

New 300 GHz transmitter enhances 6G and radar technologies

Researchers have developed an innovative 300 GHz-band transmitter for advanced 6G wireless...

3D-printed, air-powered modules help control soft robots

Researchers have developed 3D-printed pneumatic logic modules that make it possible to produce...

Optical device designed to facilitate edge computing

Researchers have developed an optical device that is designed to support physical reservoir...


  • All content Copyright © 2024 Westwick-Farrow Pty Ltd