A graphene solution for microwave interference


By Francis Sedgemore, Science Writer, Graphene Flagship
Monday, 23 March, 2015

Microwave communication is ubiquitous in the modern world, with electromagnetic waves in the tens of gigahertz range providing efficient transmission with wide bandwidth for data links between Earth-orbiting satellites and ground stations. Such ultrahigh-frequency wireless communication is now so common, with a resultant crowding of the spectral bands allocated to different communications channels, that interference and electromagnetic compatibility (EMC) are serious concerns.

Rules governing EMC dictate that new equipment meet stringent requirements concerning microwave shielding of both components and systems. This is driving a search for new materials to be used as coating layers, shields and filters in future nanoelectronic devices.

Shielding electronic devices with a barrier that simply reflects incoming microwave radiation only shifts the electromagnetic pollution problem elsewhere. The research focus is therefore on developing EMC coatings that absorb rather than reflect microwaves, with a practical emphasis on layers less than a thousandth of a millimetre thick.

A team of physicists led by Philippe Lambin from the Université de Namur in Belgium has found that a graphene plane can provide an effective absorbent shield against microwaves. The results of the study, the principal contributors to which are Konstantin Batrakov and Polina Kuzhir, both from the Belarusian State University in Minsk, are published in the journal Nature Scientific Reports. All eight of the authors are part of the Graphene Flagship, a consortium of academic and industrial partners that focuses on the need for Europe to address the big scientific and technological challenges through long-term, multidisciplinary research efforts.

Lambin and his colleagues demonstrated that the conductivity of several graphene layers adds arithmetically when thin polymer spacers separate them. Maximum microwave absorption in the Ka communications band between 26.5 and 40 GHz is achieved with six graphene planes separated by layers of poly-methyl methacrylate (PMMA), a transparent plastic also known as acrylic glass.

Multilayer microwave barriers constructed by researchers based at Joensuu University in Finland start with a first graphene layer deposited on a copper foil substrate by chemical vapour deposition. This layer is then covered with a 600-800 nm PMMA spacer obtained by spin coating, following which the copper is etched away with ferric chloride and the graphene/PMMA heterostructure transferred to a quartz substrate. The procedure is repeated until the required number of graphene layers is reached.

A single layer of graphene can absorb up to 25% of incident microwave radiation, which is a lot for a one atom-thick material. With a multilayer graphene/PMMA arrangement, the absorption rises to 50%. This can be understood by analysing the transmission and reflection of a plane wave at the interface between two dielectric media, when the interface contains an infinitesimally thin conducting layer. In this way, the researchers were able to optimise their graphene-PMMA structures for maximum absorption, with the results confirmed by rigorous electromagnetic testing.

“We have found that the static conductivity of graphene is close to the value which relates the magnetic and electric fields in any electromagnetic radiation propagating in air. Thanks to this happy coincidence, graphene is an ideal material for absorbing radio waves, thus protecting sensitive electronic devices.”

Related News

Fully coupled annealing processor for enhanced problem solving

Researchers have designed a scalable, fully-coupled annealing processor with 4096 spins, and...

STMicroelectronics breaks 20 nm barrier for next-gen microcontrollers

STMicroelectronics has launched an advanced process based on 18 nm Fully Depleted Silicon On...

Chip opens door to AI computing at light speed

A team of engineers have developed a silicon-photonics chip that uses light waves, rather than...


  • All content Copyright © 2024 Westwick-Farrow Pty Ltd