Improving energy storage with better supercapacitors


Thursday, 11 November, 2021

Improving energy storage with better supercapacitors

Researchers from the University of Surrey’s Advanced Technology Institute (ATI) and the University of São Paulo have developed a new analysis technique that should help scientists improve renewable energy storage by making better supercapacitors. Published in the journal Electrochimica Acta, the new approach enables researchers to investigate the complex interconnected behaviour of supercapacitor electrodes made from layers of different materials.

Improvements in energy storage are vital if countries are to deliver carbon reduction targets. The inherent unpredictability of energy from solar and wind means effective storage is required to ensure consistency in supply, and supercapacitors are seen as an important part of the solution.

Supercapacitors could also be the answer to charging electric vehicles much faster than is possible using lithium-ion batteries. However, more supercapacitor development is needed to enable them to effectively store enough electricity.

In light of this, the research team used a cheap polymer material called polyaniline (PANI), which stores energy through a mechanism known as pseudocapacitance. PANI is conductive and can be used as the electrode in a supercapacitor device, storing charge by trapping ions.

To maximise energy storage, the researchers developed a novel method of depositing a thin layer of PANI onto a forest of conductive carbon nanotubes. This composite material makes an excellent supercapacitive electrode, but the fact that it is made up of different materials makes it difficult to separate and fully understand the complex processes which occur during charging and discharging. This is a problem across the field of pseudocapacitor development.

To tackle this problem, the researchers adopted a technique known as the distribution of relaxation times. This analysis method allows scientists to examine complex electrode processes to separate and identify them, making it possible to optimise fabrication methods to maximise useful reactions and reduce reactions that damage the electrode. The technique can also be applied to researchers using different materials in supercapacitor and pseudocapacitor development.

“The future of global energy use will depend on consumers and industry generating, storing and using energy more efficiently, and supercapacitors will be one of the leading technologies for intermittent storage, energy harvesting and high-power delivery,” said Ash Stott, lead scientist on the project from the University of Surrey. “Our work will help make that happen more effectively.”

“Our work shows researchers how to accelerate the development of high-performance materials for use as energy storage elements, a key component of solar or wind energy systems,” added ATI Director Professor Ravi Silva, principal author on the study. “This research brings us one step closer to a clean, cost-effective energy future.”

Image credit: ©stock.adobe.com/au/adimas

Please follow us and share on Twitter and Facebook. You can also subscribe for FREE to our weekly newsletter and bimonthly magazine.

Related News

Fully coupled annealing processor for enhanced problem solving

Researchers have designed a scalable, fully-coupled annealing processor with 4096 spins, and...

STMicroelectronics breaks 20 nm barrier for next-gen microcontrollers

STMicroelectronics has launched an advanced process based on 18 nm Fully Depleted Silicon On...

Chip opens door to AI computing at light speed

A team of engineers have developed a silicon-photonics chip that uses light waves, rather than...


  • All content Copyright © 2024 Westwick-Farrow Pty Ltd