High-density data-storage devices based on FETs


Thursday, 16 June, 2022

High-density data-storage devices based on FETs

Scientists from the Institute of Industrial Science at The University of Tokyo have fabricated three-dimensional, vertically formed field-effect transistors to produce high-density data-storage devices with a ferroelectric gate insulator and atomic-layer-deposited oxide semiconductor channel. Furthermore, by using antiferroelectrics instead of ferroelectrics, they found that only a tiny net charge was required to erase data, which leads to more efficient write operations. Their work may allow for smaller and more eco-friendly data-storage memory.

While consumer flash drives already boast huge improvements in size, capacity and affordability over previous computer media formats in terms of storing data, new machine learning and big data applications continue to drive demand for innovation. In addition, mobile cloud-enabled devices and future Internet of Things nodes will require memory that is energy-efficient and small in size. However, current flash memory technologies require relatively large currents to read or write data.

Now, Tokyo researchers have developed a proof-of-concept 3D stacked memory cell based on ferroelectric and antiferroelectric field-effect transistors (FETs) with atomic-layer-deposited oxide semiconductor channels. These FETs can store ones and zeros in a non-volatile manner, which means they do not require power to be supplied at all times. The vertical device structure increases information density and reduces operation energy needs.

Hafnium oxide and indium oxide layers were deposited in a vertical trench structure. Ferroelectric materials have electric dipoles that are most stable when aligned in the same direction; ferroelectric hafnium oxide spontaneously enables the vertical alignment of the dipoles. Information is stored by the degree of polarisation in the ferroelectric layer, which can be read by the system owing to changes in electrical resistance. Antiferroelectrics like to alternate the dipoles up and down in the erased state, which enables efficient erasure operations within the oxide semiconductor channel.

“We showed that our device was stable for at least 1000 cycles,” said first author Zhuo Li.

The team experimented with various thicknesses for the indium oxide layer. They found that optimising this parameter can lead to significant increases in performance. The researchers also used first-principles computer simulations to plot the most stable surface states.

“Our approach has the potential to greatly improve the field of non-volatile memory,” said senior author Masaharu Kobayashi. Indeed, this kind of research using both experimental prototypes coupled with computer simulations may help enable future consumer electronics.

Image credit: ©stock.adobe.com/au/monsitj

Please follow us and share on Twitter and Facebook. You can also subscribe for FREE to our weekly newsletter and bimonthly magazine.

Related News

3D printing software optimises properties of plastic components

To optimise the 3D printing process for plastics, researchers have created software that can...

World Cup offside technology validated by Victoria University

Research shows that FIFA's semi-automated offside technology is both accurate and will save...

Oxidation-resistant conductive ink for printed electronics

After the ink is printed, it self-organises into a conductive pattern with a copper...


  • All content Copyright © 2022 Westwick-Farrow Pty Ltd